
- ... 0 IJ I n,•. . ..

APPROVED FOR PUBLIC RELA6DISTRIBUTION UNLIMITED

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-475
. I September 1988r'o" DTIC

AN /i ELECTE ft
ANJ INTELLIGENT PROCESS FLOW LANGUAGE EDITOR NOV 2 3 198

Rajeev Jayavant

Abstract

- A process flow language allows a user to specify the process used to fabricate integrated circuits on a
silicon wafer. By using a flow language, a designer can modify his process more easily and processing
equipment can be ured for use with different processes.

While the benefts gained from using a process flow language have been discussed frequently, one major
drawback of using a flow language has been overlooked: users must code their process flows in the flow
language. This may not seem like a disadvantage, but it is rather difficult to convince people to so
something they have never done before. Furthermore, the process must be In a language that faintly
resembles Usp, not a very appealing thought for users whose primary interest is in processing wafers, not
programming computers. Thus there Is a severe need for some tool to facilitate the coding of processes
flows in the process flow language.

Various types of programming aids have been used in the past to facilitate software development: syntax
checkers, semantic checkers, preprocessors, and Intelligent editors. The process flow editor combines
attributes from all of these. The primary difference between the process flow editor and conventional
editors is that the flow editor presents the flow to the user in a format that is very different from the format
seen by applIcations accessing the flow. (' €)

By using a different format In presenting the flow to the user, most people will not have to learn the Usp-Iike
syntax of the flow language and can concentrate on what they really want to do - specify a process flow.
The current Implementation of the flow editor uses a forms-based Interface to present the flow as a
collection of nested operations. A forms-based interface is appealing because it facilitates the design of
the editor while providing an Interface that lab users will recognize from several CAFE applications. The
use of forms also allows the flow editor to highlight the decomposition of the process flow into
parameterized operations, thereby providing a more informative view of the flow to the user.

Syntax and semantic checking is performed as the user enters the flow. The time required to code a
process flow is reduced since many common errors are caught as they are made rather than being
discovered at a later time by an Interpreter.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

An Intelligent Process Flow Language Editor

by

Rajeev Jayavant

S.B. Electrical Engineering, Massachusetts Institute of Technology
(1986)

Submitted to the Department of Electrical ESngineering and Accesot:c Fo

Computer Science NT s

in partial fulfillment of the requirements for the degrees of T.4 ;j

Master of Science
and,

," - J i .' y Cor

Electrical Engineer i adl

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1988

(Massachusetts Institute of Technology 1988

Signature of Author ...
Department of Electrical Engineering and Computer Science

August 31, 1988

C ertified by ..
Donald E. Troxel

Professor of Electrical Engineering
Thesis Supervisor

Accepted by ...
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

2

An Intelligent Process Flow Language Editor

by

Rajeev Jayavant

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 1988, in partial fulfillment of the

requirements for the degrees of
Master of Science

and
Electrical Engineer

Abstract

A process flow language allows a user to specify the process used to fabricate inte-
grated circuits on a silicon wafer. By using a flow language, a designer can modify
his process more easily and processing equipment can be reconfigured for use with

* different processes.
While the benefits gained from using a process flow language have been discussed

frequently, one major drawback of using a flow language has been overlooked: users
must code their process flows in the flow language. This may not seem like a
disadvantage, but it is rather difficult to convince people to do something they have
never done before. Furthermore, the process must be in a language that faintly
resembles Lisp, not a very appealing thought for users whose primary interest is
in processing wafers, not programming computers. Thus there is a severe need for
some tool to facilitate the coding of processes flows in the process flow language.

Various types of programming aids have been used in the past to facilitate
software development: syntax checkers, semantic checkers, preprocessors, and intel-
ligent editors. The process flow editor combines attributes from all of these. The
primary difference between the process flow editor and conventional editors is that
the flow editor presents the flow to the user in a format that is very different from
the format seen by applications accessing the flow.

By using a different format in presenting the flow to the user, most people will
not have to learn the Lisp-like syntax of the flow language and can concentrate on
what they really want to do - specify a process flow. The current implementation
of the flow editor uses a forms-based interface to present the flow as a collection of
nested operations. A forms-based interface is appealing because it facilitates the
design of the editor while providing an interface that labusers will recognize from
several CAFE applications. The use of forms also allows the flow editor to high-
light the decomposition of the process flow into parameterized operations, thereby

3

providing a more informative view of the flow to the user.
Syntax and semantic checking is performed as the user enters the flow. The time

required to code a process flow is reduced since many common errors are caught as
they are made rather than being discovered at a later time by an interpreter.

KEYWORDS: Process Flow, Intelligent Editor, Wafer Fabrication

Thesis Supervisor: Donald E. Troxel
Title: Professor of Electrical Engineering

4

Acknowledgments

I would like to thank Professor Troxel for his invaluable insights and infinite pa-

tience. Somehow he always knew which path to follow, and I doubt this project

would have been completed for several more months without his guidance.

I would also like to thank the members of the CAF project for their help during

the past two years. Special thanks to Mike Mcflrath and Mike Heytens for putting

up with my constant questions about how things should be done or complaints

about things not working the way I would like them to. I am also very grateful

to Duane Boning for providing a coding of the CMOS Baseline flow in the process

flow language - it proved to be the sole hardcopy reference for the definition of the

process flow language.

Finally I would like to thank all my friends that have put up with me during

some trying times. Very special thanksto Saed Younis who always managed to

convince me that things weren't all that bad when they seemed darkest.

This research was supported in full by the M.I.T. Computer Aided Fabrication

(OAF) project at the facilities of the Cognitive Information Processing Group

(CIPG) of the Research Laboratory for Electronics.

dedicated to my family

Contents

1 Introduction 11

2 Previously Developed Programming Aids 14

2.1 Pretty Printers 14

2.2 Semantic Checking 15

2.3 Preprocessors 15

* 2.4 Interactive Tools 16

2.4.1 The Cornell Program Synthesizer 17

2.4.2 GNOME 17

2.4.3 PECAN 19

3 The Process Flow Language 20

3.1 Operations 21

3.2 Sequences .. 22

3.3 Definitions .. 24

4 The User Interface 25

4.1 Design Considerations 25

4.1.1 Alternate Syntax 26

4.1.2 Template-based vs. Free-form Editors 27

4.2 Implementation 28

4.2.1 User's Perspective 29

6

.I ~ I* I I II * . - • S. | I. * I5 n_

CONTENTS 7

4.2.2 Implementor's Perspective 30

5 Semantic Checking 38

5.1 Parameter Values in Operation References 39

5.1.1 Number of Parameter Values 39

5.1.2 Validity of Parameter Values 40

5.2 Type Checking Within Operations 43

5.3 Type Checking Within Sequences 43

5.4 Type Inference Mechanisms 44

5.4.1 Design Methodologies 44

6 The Need for Flexibility 47

6.1 Overall Design 47

6.2 M ultiple Slots 49

6.3 Adding Functionality 51

7 Results and Directions for Future Work 53

7.1 Implementation Status 53

7.2 Enhanced Semantic Checking 54

7.3 Hiding Lisp Syntax 56

7.4 Support for the X Window System 57

7.5 Database Support 58

A The PFLE User Manual 59

A.1 Introduction 60

A.2 Entering and Exiting PFLE 61

A.3 Basic Commands 62

A.4 The Top-Level View 63

A.5 Editing Definitions 64

A.6 Editing Operations 65

CONTENTS 8

-A.6.1 Parameterized Operations 66

A.6.2 Descriptive Comment...........................66

A.6.3 References to Other Operations 66

A.7 Creating a Simple Process Flow 69

B Users' Guide to Fabform 74

B.1 Itroduction 76

B.2 Basic Operation 76

B.2.1 Screen Layout 76

B.2.2 Command Summary. 77

B.3 Cursor Movement 79

B.4 Editing Field Entries 80

B.5 Validation of Field Entries 80

B .5.1 U~nrestricted Fields. 80

B.5.2 Integer Fields 80

B.5.3 Floating Point Fields 80

B.5.4 Lisp Expression Fields. 81

B.5.5 Oneof Fields. 81

B.5.6 Default Values. 81

B.5.7 Date Fields 81

B.5.8 Read-only Fields 81

B.6 Saving Entered Field Values. 82

B.7 Exiting Fab form. 82

B.7.1 Temporary Suspension. 82

B.7.2 Permanent Exit 82

C Programmers' Guide to Fab orm 84

C.1 Introduction 86

0.2 Interaction with Fab form. 86

CONTENTS 9

C.3 Template File Format............................... 88

C.3.1 Positioning Commands...........................88

0.3.2 Field Definition Commands....................... 88

0.3.3 Operation Block Delimiters....................... 90

C.4 Parameter File Format............................... 90

C.5 Invoking FAM= fm................................. 94

D The Procedural Interface to Fab orm 97

D.1 Introduction 99

D.2 The Fab form Interface 100

D.2.1 Function Definitions 100

D.2.2 Fab orm Options. 103

D.2.3 Return Value 103

D.3 The Function Interface 104

D.3.1 The Lisp Function Interface. 106

DA4 Signal Handling. 106

D.5 Utility Routines. 107

D.6 Linking the Fabform Subroutine. 113

List of Figures

3-1 Coding of the photomask operation using the process flow language 22

3-2 Coding of the resist-develop operation using the process flow language 23

3-3 Coding of the furnace-rampup-treatment using the process flow lan-

guage 23

3-4 Coding of the gateoztube definition using the process flow language 24

* * 4-1 PFLE representation of photomask 31

4-2 PFLE representation of resist-develop... 32

4-3 PFLE representation of furnace-rampup-treatment 33

4-4 PFLE representation of gateoztube 34

5-1 Choices available upon discovery of an undefined identifier 41

5-2 Menu of options for :treatment slot containing :furnace 46

6-1 Overall Design of PFLE 48

A-i Menu for selecting type of object to create 70

A-2 simple with fields for two references 71

A-3 simple with reference to grow-field-oxide 71

A-4 pattern-active-area with parameter defined 72

A-5 Completed definition of simple 72

10

Chapter 1

Introduction

The sequence of operations, or treatiaents, performed on a silicon wafer in order to

fabricate integrated circuits is often referred to as a process flow. The development

of a language for describing a process flow is an integral part of the CAF 1 effort at

M.I.T. Without the aid of a flow language, a typical process flow may be described

in a document several hundred pages in length that can only be understood by

the process engineer that created it. Using a process flow language to specify the

steps necessary to fabricate an integrated circuit on a silicon wafer provides several

benefits:

" The process flow language provides a standard format for defining process

flows. Any process engineer (or an interpreter that operates on the flow lan-

guage) should be able to understand a flow coded in the process flow language.

Thus the flow language serves as a documentation tool, allowing people other

than the creator of the flow to fully understand the fabrication procedure.

" The same representation can be u.,ed for simulation and fabrication. Different

interpreters can use the flow language description to perform different tasks.

Once a process flow has been successfully simulated, it can be immediately

'Computer Aided Fabrication

11

[.

CHAPTER 1. INTRODUCTION 12

tested on the fabrication line with minimal effort.

Processing equipment can be more easily reconfigured to run several processes.

Since the process flow is encoded in machine-readable form, it becomes possi-

ble to build systems that download recipes to equipment based on what will

be processed next. A single fabrication facility can support multiple processes

simultaneously.

By precisely documenting the steps in the process flow and recording mea-

surements made during fabrication, repeatability of fabrication results is im-

proved. Tracing sources of problems leading to poor yields is also facilitated

by the availability of information.

The process flow description can be used to schedule the use of equipment in

the lab. The scheduler would be yet another interpreter using the common

flow language description.

The one major drawback of using a flow language is that users must code their

process flows in the flow language; This may not seem like a disadvantage, but it

is rather difficult to convince people to do something they have never done before.

Furthermore, the process must be in a language that faintly resembles Lisp, not a

very appealing thought for users whose primary interest is in processing wafers, not

programming computers. Thus there is a severe need for some tool to facilitate the

coding of process flows in the process flow language.

This thesis describes one such tool: an intelligent process flow language editor.

We begin by first examining some of the tools that have been previously developed

to simplify software development. The process flow language editor, or PFLE,

combines features from many of the tools described in chapter two, however, it

differs from most previously developed expert editors in one major respect: the

process flow is presented to the user in a format that is very different from the

syntax of the process flow language. By using a different format, we can hide much

r -

CHAPTER 1. INTRODUCTION 13

of the -Lisp-like syntax of the flow language from users who may be intimidated by

the sight of parentheses. Chapters three and four discuss the syntax of the process

flow language and the format presented to the user.

Chapter five discusses the semantic checking abilities of the editor and the design

methodologies supported by PFLE. Chapter six considers the issue of flexibility in

the design of the editor and explores some of the implementation issues related to

that requirement of flexibility. PFLE is designed provide enough flexibility to form

a platform on which to build more advanced ezpert systems for developing process

flows.

Finally, chapter seven examines the present state of the flow language editor

and considers possible areas of improvement in future implementations. One area

of concern is how well the flow editor caters to different types of users. PFLE

is intended to be used by both novices and experienced programmers. It should

provide enough hand-holding to guide novices yet these hand-holding mechanisms

should not hamper experienced programmers.

The appendices provide additional information which may be useful to someone

that is planning to use the flow language editor or is considering building a simila:

piece of software. Appendix A is the user manual for the process flow language

editor. Appendices B thrc ugh D are the manuals for Fabform, the generalized

forms-based user interface upon which the flow language editor is built.

Chapter 2

Previously Developed

Programming Aids

We begin the task of designing a tool for simplifying the coding of process flows'

in the flow language by first examining previous efforts at simplifying coding of

programs. The process flow language contains many attributes found in familiar

programming languages, thus a study of existing programming aids should provide

some useful insights on how to begin designing PFLE. This basic design can then

be extended to cater to the special needs of the process flow language.

2.1 Pretty Printers

Various types of programming aids have been used in the past to facilitate software

development. The simplest such tools are the pretty-printers which reorganize the

source code to improve readability. Hopefully, the reorganization will highlight the

framework of the program and reveal syntax-related inconsistencies between the

code and what the programmer intended. Thus the programmer can spend more

time thinking about what he is trying to accomplish rather than waste his time

figuring out what his code really means. The major disadvantage of pretty-printers

14

CHAPTER 2. PREVIOUSLY DEVELOPED PROGRAMMIVG AIDS 15

is that they are non-interactive. The utility is fed a source file and produces an out-

put file containing the reorganized source code. Nevertheless, pretty-printers have

proven to be useful programming aids and are available for a number of languages

(e.g., the Unix indent utility for C and the CLU indenter included with the CLU

development system).

2.2 Semantic Checking

Unfortunately syntax-checking alone will not detect a large number of coding errors.

A syntax checker, for example, does not know anything about the type of various

identifiers in a program, or whether an identifier is valid within a particular section

of code. A semantic checker is needed to determine whether it is legal to perform

operations on specific identifiers. It can also be argued whether the semantic checker

or the syntax checker should be responsible for ensuring that the proper number of

arguments is passed to a procedure (though the semantic checker certainly has the

responsibility of determining whether the types of the arguments are correct). An

example of a semantic checker is lint, the Unix utility for validating C programs.

The trend in the evolution of programming languages and compilers has been

to detect as many errors at compile time as opposed to run time. While the Unix C

compiler does some type-checking, it does not, in general, check the number or types

of arguments passed to procedures. A compiler for a more strongly-typed language,

such as CLU, does perform the rigorous checking of arguments. A C programmer

must use lint to obtain rigorous checking. Thus as languages and compilers evolve,

the semantic checkers have moved from stand-alone utilities into the compilers.

2.3 Preprocessors

A completely different class of programming aids can be grouped under the category

of preprocessors. A preprocessor is a tool which transforms an input file from

CHAPTER 2. PREVIOUSLY DEVELOPED PROGRAMMING AIDS 16

one format into another. In some sense, a pretty-printer can be thought of as

a preprocessor, however a preprocessor generally allows the input to be specified

using a slightly different syntax from the output. For example, a macro preprocessor

allows the input file to contain macro definitions and instances in which the macros

are used. The output file will not contain the macros but rather the result of

expanding the macros. Thus the output file can be fed to some other tool that

doesn't understand macros, allowing the programmer to use a more suitable syntax

(e.g., macros). Another example of a preprocessor is ratfor, the so-called rational

FORTRAN preprocessor which allows the use of structured constructs such as while

loops to be used in a FORTRAN program.

2.4 Interactive Tools

The next step in the evolution of programming aids has been the development of

increasingly intelligent editors. Emacs provides a good example of such an editor.

In addition to providing interactive indentation mechanisms as mentioned above, it

provides a certain amount of syntax checking'. In Lisp mode, it indicates pairs of

matching parentheses as the user types close parentheses. In C mode, it goes one

step further by matching pairs of braces and brackets as well.

Language-sensitive editors (e.g., GNOME, POE) provide more rigorous check-

ing of syntax. In addition, they facilitate programming for novices by allowing

the programmer to insert code fragments in terms of fundamental syntactic blocks

rather than forcing him to build the blocks from their individual components. 2 The

following subsections examine a few language-sensitive editors in greater detail.

The advantage of making editors increasingly language-sensitive is to discover

as many errors as early as possible (program creation time as opposed to run-time

'Perhaps syntax highlighting is a more appropriate description
2 1n POE (A Pascal-Oriented Editor [FischerS41), for example, the user simply needs to enter

"*TF to force the editor to insert a complete "IF-THEN-ELSE' block.

CHAPTER 2. PREVIOUSLY DEVELOPED PROGRAMMING AIDS 17

or even compile-time). Just as increased semantic checking at compile-time versus

run-time reduced the time required to develop software, increased semantic at code

creation time will reduce coding time even further.

2.4.1 The Cornell Program Synthesizer

The Cornell Program Synthesizer is one of the first syntax-directed editing envi-

ronments to see any degree of widespread use. The syntax-directed editor is, in

fact, just one component of an integrated programming environment for creating,

editing, executing, and debugging programs written in PL/CS (a dialect of PL/I).

We will, however, concentrate on the editing features of the Program Synthesizer.

The editing environment is syntax-directed in which a program is viewed (con-

ceptually) in terms of a syntax tree rather than as text. A program is created or

modified by inserting or deleting predefined templates at appropriate positions in

the program. Virtually all editing is done in terms of templates - only numbers, !_

identifier names, and character strings are entered character by character. The

grammar is encoded into the templates, thus the editor only allows templates to

be inserted or deleted in a manner that results in a syntactically correct program.

The original implementation of the Program Synthesizer [Teitelbaum8l] did not

perform any semantic checking. The Synthesizer Generator [Teitelbaum84] cre-

ates a Program Synthesizer-like editor for an arbitrary language. The language

must be specified in terms of an attribute grammar, allowing some semantic check-

ing information to be specified. The Berkeley process flow language editor, SEPS

[Sedayao88], is created using the Synthesizer Generator, though it does not perform

any semantic checking in its current implementation.

2.4.2 GNOME

GNOME [Garlan84] provides a syntax-directed programming environment targeted

primarily at novice programmers. The family of four editors (each catering to a

CHAPTER 2. PREVIOUSLY DEVELOPED PROGRAMMNG AIDS 18

different language) is used by students in the introductory programming class at

Carnegie Mellon University, providing ample feedback on the utility of the program-

ming environment provided by GNOME. The individual editors within GNOME

are are based on ALOE (also developed at CMU) which generates an editor from a

grammar for the language to be edited.

Like the Cornell Program Synthesizer, GNOME is a complete programming en-

vironment, allowing programs to be run from within the editor. There are, however,

a number of important differences between GNOME and the Program Synthesizer

which are required if a syntax-directed editor is to prove useful to a novice pro-

grammer.

Although both editors view a program in terms of a syntax tree, the Synthesizer

reflects this view in the way a user traverses a program. The cursor can only

be moved from one template to the next. To move to a template within another

* * template (e.g. the predicate within an if-then-else expression) requires a separate

command. GNOME, on the other hand, exercises less rigorous control on cursor

movement, allowing the cursor to be moved onto any editable location within a

program, much like a text editor. Novice programmers tend to think of programs

as text and can be confused by a structure-oriented editor like the Synthesizer.

Some of the other features of GNOME cater particularly well to novice program-

mers in general and to a teaching environment in particular. GNOME attempts

to enforce programming methodologies by making it easier to code programs the

"right" way. For example, GNOME simplifies the task of declaring all identifiers

before defining the procedure body. The other notable feature is that GNOME

not only performs semantic checking, it attempts to help the user correct seman-

tic errors, if possible. For example, if GNOME detects the use of an undeclared

identifier, it asks the user whether it should define the identifier.

CHAPTER 2. PREVIOUSLY DEVELOPED PROGRAMMING AIDS 19

2.4.3 PECAN

PECAN [Reiss84i also provides an integrated programming environment, however,

it in unique in its user interface. Although the program is stored internally as an

abstract syntax tree, PECAN provides multiple views of the program. For example,

some users will prefer the standard textual description which may be edited using

a structural editor (similar to the one provided by the Cornell Synthesizer). Others

may prefer a graphical representation in the form of a flow chart or a module

interconnection diagram. Thus PECAN decouples the representation a program is

stored in from the representation seen by the user.

Chapter 3

The Process Flow Language

The Process Flow Language is embedded in Common Lisp, thus it inherits many of

the qualities of Lisp. The most noticeable of these qualities are the use of parenthe-

sized expressions and the use of keywords. The flow language also uses the define
construct found in Scheme. Building an editor capable of performing semantic

checking of arbitrary Lisp expressions would be a formidable task since types of

objects cannot be easily determined until runtime.

The process flow language editor simplifies its task by concentrating its efforts

on a subset of the flow language. By choosing the proper subset, the editor retains

enough power to specify virtually any process flow while gaining the ability to

provide very thorough syntax and semantic checking mechanisms. In some cases,

expressing a flow using only the subset of the flow language may lead to a flow

description that is more cumbersome than one coded using the full power of the

flow language. A cumbersome description, however, is infinitely preferable to no

description at all (which is what would be available without the aid of an editor like

PFLE). Thus the flow language editor views a process flow in terms of three types

of objects: operations, sequences, and definitions.

20

CHAPTER 3. THE PROCESS FLOW LANGUAGE 21

3.1. Operations

An operation is the fundamental unit of a process flow. The entire process flow is

merely a special type of operation that is called a flow. Figures 3-1 and 3-2 show

examples of two operations from an encoding of the CMOS baseline process flow.

An operation consists of:

9 An optional comment. The comment is used to describe what function the

operation performs. PFLE displays this comment whenever the operation is

referenced in another operation or in a sequence.

* Zero or more other operations or sequences of operations. Operations may

be nested to arbitrary depths. The photormak operation shown in figure 3-1

references the operations hmds-prime, reaist-coat, reiast-ezpoee, resist-develop,

resist-bake, and resist-irapect.

* Multiple slots. The photomask operation contains slots for :settings whereas

the resist-develop operation in figure 3-2 contains slots for :change-wafer-

state and :settings.

The process flow language does not specify how many slots an operation must

have or what those slots should be. The semantics associated with any particular

slot are determined entirely by the interpreter that operates on the process flow. An

interpreter should ignore any slots that it does not understand, and it should not

require a slot to be specified at all times. The interpreters based on the two-stage

process model, for example, work with three types of slots:

:change-wafer-state description of the change in wafer state as a result of per-

forming the operation

:treatment the wafer treatments that will lead to the desired change in wafer state

CHAPTER 3. TI ?ROCES& -LOW L. "UAGE 22

:settlngs the machine settings required to produce the desired treatments (and

therefore to produce the desired change in wafer state)

A particular slot may contain primitives or sequences of primitives appropriate

to that slot. The primitives for a given slot are determined solely by the interpreters

that access that slot. The actual syntax used within a slot is also determined by

the interpreters, thus the syntax can vary from slot to slot.

Operations can be parameterized by using the define construct. Default values

can also be specified for parameters as illustrated in the photomask operation in

Figure 3-1. Arguments to a parameterized operation are passed by keyword, thereby

eliminating the need to remember the proper order of parameters.

(define (photomask mask (resist :positive-resist)
(dswjob :unknown))

(operation
"Standard photomask step"
hids-prime
(resist-coat :resist resist)
(resist-expose :mask mask :dswjob dswjob)
resist-develop
resist-bake
resist-inspect
(:settings

(:time-required (:hours 3 :minutes 35)))))

Figure 3-1: Coding of the photomask operation using the process flow language

3.2 Sequences

Sequences are lists of primitives or sequences of primitives. All of the primitives

within a sequence must be of the same type, i.e. all of the primitives must be

CHAPTER 3. THE PROCESS OW L 'GUA' 23

(dot ins resist-develop
(operation

'The exposed wafers are loaded on to the GCA developing
track. Resist is developed using a spray-develop recipe and
subsequently hard baked at 200 C for £ iti. KTI 934 Alkali ion free
developer (premixed 1-1) is used."

(:change-water-state
(:develop))

(:settinigs
(:recipe 21)
(:time-required (:hours 0 mainutes 50))

Figure 3-2: Coding of the resist-develop operation using the process flow language

appropriate for a single type of slot in an operation. Figure 3-3 shows the furnace-

rampup-treatment which is a sequence of :treatment primitives. Thus furnace-

rampup-treatment may be used within a :treatment slot of an operation or within

another sequence of :treatment primitives. Sequences consisting of operations are

also possible, though they are rarely used since they are essentially equivalent to

operations without any slots.

(define (furnace-rampup-treatment temperature)
(sequence

(:furnace :temperature 800 :time (:minutes 10)
:ambient :n2)

(:furnace :temperature 800 :ambient :n2 :time
(:minutes U(I - temperature 800) 10))
:teup-rate 10)

(:funace :temperature temperature
:time (:minutes 10) :ambient :n2))

Figure 3-3. Coding of the furnace- rampu p-treatme nt using the process flow language

Like operations, sequences may have optional comments (furnace- ram pup-treatment

* . CHAPTER 3. THE PROCESS LOWL, 4GUAC 24

does not have a comment) and can be parameter, . using the define construct.

3.3 Definitions

From a Lisp or Scheme programmer's point of view, all of the examples are con-

sidered to be definitions. The process flow editor, however, regards definitions as a

construct for defining constants. Figure 3-4 shows the definition of gatcoxtube, the

furnace tube that is used for growing gate oxide on a silicon wafer. Experienced

programmers can also use definitions to reference more advanced features of the

process flow language.

(define gateoxtub. "tubeAl")

Figure 3-4: Coding of the gateoztubc definition using the process flow language

Chapter 4

The User Interface

The process flow editor combines attributes from all of the programming aids de-

scribed in chapter 2: syntax checkers, semantic checkers, preprocessors, and intelli-

gent editors. A notable difference between the process flow editor and conventional
b

editors is that the flow editor presents the flow to the user in a format that is very

different from the format in which it is actually stored 1. Thus the process flow

editor is like a preprocessor in that it converts the user's input into the syntax of

the flow language. It differs from a preprocessor, however, in that the process flow is

only stored using the flow language syntax and never in the preprocessed form. The

editor is capable of converting from one form to the other when flows are loaded

and saved. Since the flow is always saved in the syntax of the flow language, the

flow can be edited using other editors, if desired.

4.1 Design Considerations

The design of the user interface of PFLE can be decomposed into two subproblems:

1. choosing the syntax to present to the user

lor the format that is used by programs accessing the flow

25

CHAPTER 4. THE USER INTERFACE 26

2. designing the method of interacting with the user (e.g. free-form vs. template-

based entry)

Since most editors present the syntax of the language directly to the user, the design

of the user interface is reduced to the second subproblem. In the case of PFLE,

however, the choice of syntax presented to the user is perhaps even more important

than the method of interaction with the user.

4.1.1 Alternate Syntax

By using a different format in presenting the flow to the user, most people will

not have to learn the Lisp-like syntax of the flow language and can concentrate on

what they really want to do - specify a process flow. Hiding the Lisp-like syntax is

particularly important when dealing with users who are somewhat computer-phobic

to begin with and refuse to have anything to do with programming.

The major issue in choosing the syntax to present to the user is to find a format

that allows the user to specify the important concepts of the flow in a simple manner.

The previous chapter describes the first step towards finding this syntax - choosing

a subset of the process flow language that is as simple as possible while retaining

enough expressive power to code most process flows. Thus the view of the flow

presented to the user is based on the concept of parameterized operations.

A process flow consists of a number of operations, each of which may take zero or

more parameters. Each operation, in turn, may be composed of other operations.

This hierarchy of nested operations eventually bottoms out in a set of primitive

operations defined by the various interpreters that will process the flow. In this

view, sequences are special operations that do not have multiple slots but can

be used within a slot of an operation. The semantic checker (described in the next

chapter) is responsible for ensuring that sequences and operations are used in the

proper context. The user only has to worry about two types of objects: operations

and definitions.

CHAPTER 4. THE USER IN ?FACE 27

PFLE provides a simpler, higher-level view of the process flow language. Instead

of learning the intricacies of Lisp, the process engineer only needs to learn simpler

the concepts of parameterized operations and definitions. In rare cases, though,

the view presented by PFLE may lack the expressive power required to represent a

segment of the process flow. In such cases, it will be necessary to code the segment

directly in the process flow language (either by using a definition or by using a

different editor). The situation is analogous to one faced by a Lisp programmer who

finds that he must code some segments of his program in C because Lisp lacks the

functionality for performing some low-level operations. Experience with the CMOS

baseline process flow has shown that the subset of the flow language supported by

PFLE is more than adequate to express the entire flow. Since most users will create

flows by choosing from predefined operations (e.g. those defined within the CMOS

baseline flow), PFLE will prove to be a very effective tool.

Another consideration in choosing the syntax to present to the user is the amount

of effort required to learn the syntax. Since one of the main goals of PFLE is to

allow novice users to create process flows with minimal effort, the syntax seen by the

user should be similar to something he is already familiar with (and not frightened

by). Forcing the user to learn a completely alien syntax may be even less productive

than forcing him to learn Lisp, though he may be more willing to learn a syntax

that isn't littered with parentheses.

4.1.2 Template-based vs. Free-form Editors

A template-based editor is one in which text is inserted or deleted in blocks rather

than character by character. The blocks normally correspond to syntactic con-

structs. For example, a template-based editor for C or Pascal may insert or delete

entire if-then-else expressions via a single keystroke. Template-based editors also

tend to restrict where the cursor may be positioned and where templates may be

inserted.

CHAPTER 4. THE USER INTEZFACE 28

Free-form editors, on the other hand, resemble generic text editors. The text is

inserted or deleted character by character. Cursor movement is normally not re-

stricted, though an editor with syntax and semantic checking may restrict insertion

or deletion of text in certain places.

Both types of editors can provide the basis for building an expert editor. Free-

form editors have the advantage that they resemble the text editors that users are

familiar with. Making minor changes is easy since a program can be modified on a

character-by-character basis. Making minor changes using a template-based editor

may require considerably more work since all changes must be made by inserting

and deleting blocks of text. A minor modification could involve the deletion and

reinsertion of text that wasn't affected by the change. Entering code, however,

tends to be much faster using a template-based editor. Since text is inserted in

blocks, large amounts of text can be entered using a few keystrokes.

From an implementation standpoint, building a syntax and semantic checking

editor based on a template-based editor is much easier than building one based on

a free-form editor. Since a template-based editor inserts or deletes text only in

blocks, minimal effort is required to ensure that blocks are inserted and deleted in

such a way that the resulting program remains syntactically correct. The problem of

syntax checking using a free-form editor is much more difficult since text is inserted

and deleted character by character in arbitrary positions. An incremental parser

must be built to determine whether a syntactically correct program is being entered,

a formidable task in itself. Thus a template-based editor is highly preferable from

an implementation standpoint.

4.2 Implementation

Based on the requirements for a suitable syntax to present to the user and the desire

to build a template-based editor, PFLE is built on top of Fabform, a generalized

CHAPTER 4. THE USER INTERFACE 29

forms-based editor that provides the user interface for a number of applications in

the CAFE2 system. Appendices B, C, and D provide additional information on

Fabform.

4.2.1 User's Perspective

The decision to use Fabform as the core of PFLE provides a number of benefits

from the user's perspective. Firstly, Fabform provides a user interface that users

are very comfortable with. Many applications in the CAFE system, including the

menu, machine operation utilities, and machine reservation utility, use Fabform as

the user interface. Since users are already familiar with the basic commands for

Fabform, a minimal amount of effort is required to learn to use PFLE. Even new

users will find PFLE easy to learn to use since the commands resemble those of

Ema, one of the most popular text editors. Refer to Appendices A and B for

commands supported by PFLE and Fabform, respectively.

Secondly, since Fabform is a forms-based editor, the user deals with a syntax that

is represented as a form. Thus the user has the illusion of filling out a form rather

than programming in a computer language. Lab users in the Integrated Circuits Lab

are very comfortable filling out forms. The machine reservation program presents

a form to be filled out for reserving use of a machine for a period of time. Forms

are also used to specify the treatment parameters for a batch of wafers destined

for the ion implanter. Thus specifying a process flow is not unlike requesting a

treatment in the ion implanter - the corresponding form is just much longer. While

some non-programmers find the idea of programming in a computer language (or

the process flow language for that matter) somewhat frightening, they tend to be

very comfortable with the idea of filling out forms.

Figures 4-1, 4-2, 4-3, and 4-4 show the representations of the process flow dis-

played by PFLE corresponding to the flow language descriptions illustrated in fig-

2Computer Aided Fabrication Environment

CHAPTER 4. THE USER INTERFACE 30

ures 3-1, 3-2, 3-3, and 3-4. As mentioned previous the distinction between op-

erations and sequences is blurred when presenting the flow to the user. The

furnace-rmpup-tratment sequence illustrated in figure 4-3 appears to be an oper-

ation that has a single slot, .tretment (in this case, PFLE has determined that the

sequence can be used only in a .tretment slot).

4.2.2 Implementor's Perspective

The advantages of building PFLE on top of Fabform are even greater from the

implementor's perspective.

4.2.2.1 Simplified Implementation

Fabform handles all of the low-level user interaction, freeing PFLE from the details

of managing information on the screen. Thus the implementation of PFLE can be

devoted primarily to higher level problems such as syntax and semantic checking,

significantly reducing development time.s

Since most of the low-level interaction is decoupled from PFLE, the majority of

the implementation of PFLE can be reused if we later discover that Fabform is not

the most suitable low-level interface. In the meantime, we have a fully functional

flow language editor which we can use to evaluate the validity of the higher level

functions of PFLE (e.g. the syntax and semantic checking, higher level view of the

flow, etc.).

4.2.2.2 Syntax Checking

Fabform provides the core of a template-based editor, simplifying the task of syntax

checking. An application built on top of Fabform sees an event-loop model of

3 Fabform has been developed and refined over the past 16 months. Building a low-level interface
for PFLE from scratch would have required several weeks of effort and not been nearly as refined as
Faborm.

CHAPTER 4. THE USER INERFACE 31

Can this operation be a complete flow?

2
Kodi 920 positive resist is used twotio"u.

resist

Desired pattern is generated an the wafers bV wqsing the, toc the approp le

dswjob

4
The e "edwfers aes laded an to the MCA developing track. Resist is dmie

5 ANM
Bake the resist to he-don it against etch &Wd implant, etc.

6

:change wafer-ttte

cue-1

:treatment

trs-I

.*setting*

set-i

11sf description of what this operation does

Figure 4-1: PFLE representation of photoinask

CHAPTER 4. THE USER IVTERFACE 32

resist-dewlap

Can this operation be a complete flow?3

1

:chsmg-er-sv t

tres-I

:settings

set-I

set-2

Dr1sf description of Wat this operation dos

Figure 4-2: PFLE representation of resist-develop

CHAPTER 4. THE USER INTERFACE 33

tree

,oo

abient
time
topw-rate

tre-2

temperature
ambient
time

tre-3

to-tr

time

-isf decription of what this list of op*rations" doe

Figure 4-3: PFLE representation of furnace-rampup-treatment

CHAPTER 4. THE USER LI VTERFA CE 34

The definition for this Identifier

Figure 4-4: PFLE representation of gateoxtube

CHAPTER 4. THE USER INTERFACE 35

computation. It sets up an initial description of a form and hands it to Fabform.

Whenever the user does something of interest to the application (such as entering

a value in a field of the form or pressing a particular keystroke), Fabform executes

a procedure specified by the application. These procedures can query the user,

change values of slots in the form, add or delete fields from the form, etc. The

event-loop continues until the user exits Fabform and complete control returns to

the application. The application may then examine the final state of the form and

take the appropriate actions.

Thus, PFLE creates a form that corresponds to an object in the flow language

and hands it to Fabform. Fabform, in turn, calls functions defined by PFLE when-

ever the user fills in a field (such as the name of an operation to use) or when the

user enters certain keystrokes (such as control-X control-I to insert additional fields

into the form). When the user exits Fabform, PFLE reads the description of the

resulting form and creates the corresponding flow language object. The problem of 0

syntax checking can be reduced to two subproblems:

1. ensuring that the form always contains a set of fields that correspond to a

syntactically correct object in the process flow language

2. ensuring that the fields in the form are filled in with entries that are syntac-

tically correct

The second subproblem is handled completely by Fabform since it ensures that a

form is filled out correctly.4

Thus PFLE must ensure that a form contains a syntactically correct collection

of fields. The definition of a form is, in effect, the definition of the syntax. Consider

the form shown in figure 4-1, for example, and compare it to the corresponding flow

object illustrated in figure 3-1. The fields at the top of the form correspond to the

'Each field in a form can be restricted to contain only certain types of entries, e.g. integers,
floating-point numbers, dates, lisp expressions, etc. Fabform ensures that the proper type of value
is entered into a field and will not allow an incorrectly filled form to be saved.

........*uu mu u u u i m /I IE u r u.- -

CHAPTER 4. THE USER INTERFACE 36

declaration of the parameters for the operation; the fields in the left column contain

the names of the parameters while those in the right column contain the optional

default values of the parameters. The large field below the parameter names con-

tains the optional comment. The remainder of the form contains fields for entering

references to operations, sequences, and primitives (all of which are presented as

references to parameterized operations). When a parameterized operation is ref-

erenced, additional fields are provided for specifying the values to be given to the

parameters (the reference to resist-coat provides an example).

Once PFLE creates an initial form corresponding to a flow language object, it

must ensire that fields are inserted or deleted from the form in such a way that

a syntactically correct flow language object can be built from the resulting form.

Thus, when adding or deleting parameters to an operation, a pair of fields (cor-

responding to the name and default value of the parameter) is inserted or deleted

i simultaneously. When adding or deleting a reference to an operation, fields cor-

responding to the values of all the parameters of the operation are also added or

deleted simultaneously. For example, if we added a reference to photomask in some

other operation, fields would be inserted into the form corresponding to the values

of the three parameters of the operation: mask, resist, and dswjob. By always in-

serting and deleting groups of fields that correspond to syntactic blocks in the flow

language, PFLE ensures that the resulting form always corresponds to a syntacti-

cally correct flow language object.

This practice of inserting fields corresponding to the values of parameters to

an operation when an operation reference is inserted provides a useful byproduct:

users do not have to memorize the names of parameters to operations. For example,

if the user enters a reference to photomask, fields are immediately created for the

values of its parameters. The names of the parameters are displayed to the left of

the fields which the values will be entered into. Thus the user doesn't have to know

that mask, resist, and dsu'ob are the names of the parameters to photomask. Even

CHAPTER 4. THE USER INTERFACE 37

if he does know the names of the parameters, the user saves a great deal of typing

by having the parameter names inserted into the form for him. If he were using a

conventional text editor, the user would have had to manually enter the keywords

corresponding to the names of the parameters.

Chapter 5

Semantic Checking

The previous chapter described the syntax checking, or syntax enforcing, capabilities

of the process flow editor. Syntax enforcement alone, however, will not allow PFLE

to detect the majority of coding errors as they are made. Some form of semantic

checking is required if PFLE is to be capable of significantly reducing the time

required to correctly code a process flow.

Some of the most commonly made errors, by novices and experienced program-

mers alike, are the result of mistyping. A syntax checker may detect some typo-

graphical mistakes (such as entering an extra parenthesis, etc.), but a more common

occurence is a typing mistake that results in misspelling the name of an identifier.

The resulting segment of code is syntactically correct, but it obviously does not

do what the programmer intended. A semantic checker could prove very useful in

detecting errors like these, though even the most advanced semantic checker could

be fooled if the misspelled name belonged to another identifier that could be used in

the same context. We will examine a few other types of errors that are commonly

made which can be detected fairly easily with the aid of a semantic checker.

An interesting characteristic of the semantic checking mechanisms of PFLE is

that they attempt not only to detect semantic errors but also help the user correct

them. Conventional semantic checkers, such as those incorporated into compilers

38

CHAPTER 5. SEMANTIC CHECKLIG 39

or utilities like lint, are dedicated to detecting errors and identifying their location.

While identifying errors can be very helpful, novices may not know how to correct

the problem. Whenever possible, PFLE provides a set of options for the most

reasonable way to correct the error that was just detected. The following sections

describe the semantic checking abilities of PFLE, as well as the types of options

PFLE provides to the user when it detects the errors.

5.1 Parameter Values in Operation References

The view of the flow presented to the user consists of two types of objects: def-

initions and optionally parameterized operations. The body of an operation may

reference other operations, each of which may require values to be specified for pa-

rameters to the operations. These operations may, in fact, map to sequences or

primitives in the process flow language. Thus semantic checking of parameters to

operation references also involves checking of parameters to references to sequences

and primitives.

5.1.1 Number of Parameter Values

Since parameter values are passed by keyword in the process flow language and

each parameter has a default value (NIL if the default is not explicitly specified),

the number of parameter values specified in an operation reference can vary for any

given operation. For example, a reference to photomask may specify values for all

three parameters or may just specify a value for mask and use the default values

for resist and dsauob. Thus checking for the number of parameters in an operation

reference does not seem to be a worthwhile venture.

A more appropriate semantic check is to ensure that the keywords preceding

the values of the parameters match the names of the parameters to the operation.

PFLE converts this semantic checking problem into a syntax enforcement problem.

.................... . . lw l wm ~ l W ' IImi~I I l II I I i i i i i I

L

CHAPTER 5. SEMANTIC CHECKING 40

Whenever the name of an operation is specified in an operation reference, PFLE

immediately creates fields into which the values of the parameters to the operation

may be entered. The names of the parameters are displayed next to the fields for

the values, and PFLE translates the forms-based description of the operation refer-

ence into its flow language counterpart. The user never has to enter the keywords

corresponding to the names of parameters to the operation - PFLE automatically

inserts the correct keywords for values that are specified (not left blank in the form).

5.1.2 Validity of Parameter Values

Assuming the value for a parameter is syntactically correct, it may still be invalid

for one of two reasons:

* It is of the wrong type.
4.

9 It is undefined in the current context.

Since the process flow language is essentially type-less, checking the type of a value

cannot be performed in general. Thus PFLE does not perform any type-checking

of values of parameters. Chapter 7, however, discusses the feasibility of adding this

feature to PFLE in a future implementation.

Checking whether a value is defined in the current context is much more feasible.

In general, the value specified for a parameter can be an arbitrary Lisp expression,

and the value of the expression would be undefined if the value of any subexpression

within the expression was undefined. PFLE, however, currently only checks whether

identifiers are defined in the current context. Since the process flow language is

lexically scoped, checking the validity of an identifier is a fairly simple problem.

When PFLE detects an attempt to use an undefined identifier, it displays a

menu similar to the one shown in figure 5-1. Rather than simply indicating an

error, PFLE provides a set of options for correcting the error. In this case, the user

is given the option to:

CHAPTER 5. SEMANTIC CHECKING 41

FOO-m is rwmdfined in the carrent context
Select one of the fol lowing by moving to the a" and preing any kep

re-edit value
Define the symbol globallyI ake it a prameter to this opeation
Kokoit a quoted string
hake it a keword

Press any kAy to pick this cfoic

Figure 5-1: Choices available upon discovery of an undefined identifier

CHAPTER 5. SEMANTIC CHECKING 42

* Re-edit the value. In most cases, the user probably simply mistyped the name

of the identifier and needs to correct his typing error.

* Define the identifier globally. The user may have forgotten to define the iden-

tifier in the global namespace (using a definition). If this option is chosen,

PFLE will first let the user edit the (newly created) definition for the identifier

and then return to the the object that was being edited when the error was

detected.

9 Make the identifier a parameter to the operation. The user may have forgot-

ten to declare the identifier as a parameter to the operation. Rather than

making the user move around the form and enter a sequence of keystrokes,

choosing this option quickly adds the identifier to the set of parameters for

the operation.

e Make the identifier a quoted string. The user may have forgotten to put

quotation marks around a value that was meant to be a string (e.g. entering

nanospec instead-of "nanospec").

* Make the identifier a keyword. The user may have forgotten to prefix the

identifier with a colon to indicate that it is a predefined constant (e.g. entering

boron instead of :boron).

* Use the identifier anyway. The philosophy behind the design of PFLE is

that the user always knows best. Even if PFLE thinks the user is making a

mistake, it allows the user to use an undefined identifier if he insists on using

it after being warned. Perhaps the user is going to merge this process flow

with another one in which the identifier is defined.

CHAPTER 5. SEMANTIC CHECKING 43

5.2. Type Checking Within Operations

Although the process flow language is type-less as far as the values of parameters

to operations are concerned, it is strongly typed in terms of what objects may

appear within the slots of an operation. An operation may be composed of multiple

slots and references to other operations. Any particular slot may only contain

references to primitives or sequences of primitives appropriate for that type of slot.

Similarly, all references to other operations must truly refer to operations (in terms

of the definition of operations in the underlying flow language, not in terms of the

model presented by PFLE). The references may not be to primitives or sequences

of primitives.

The semantic checking subsystem of PFLE is responsible for ensuring that only

the proper types of objects are referenced in the various parts of an operation. If

the user attempts to reference an object of the wrong type, PFLE indicates that

the object cannot be used in that position in the flow. If, on the other hand, the

object does not exist, PFLE offers to create an object of the proper type. If the

user decides to create the object, PFLE allows him to edit the newly created object

(to define the parameters, for example) and then returns to the object that was

originally being edited.

5.3 Type Checking Within Sequences

Type checking within sequences is very similar to type checking within operations.

If the type of a sequence is known, then the type checking within the sequence is

identical to type checking within an individual slot in an operation. If, on the other

hand, the type of the sequence is unknown, no type checking is performed within

the sequence until the type of the sequence can be inferred.

L

CHAPTER . SEMANTIC CHECKING 44

5.4 Type Inference Mechanisms

Some form of type inference mechanism is required to determine the type of a given

object. Without the type inference mechanism, it would be impossible to perform

the type checking within operations and sequences. Two type inference mechanisms

are used in PFLE.

The type of an operation is simply "operation," and the type of a primitive can

be determined by using information that defines the primitives for each type of slot

within an operation. The type of a sequence, on the other hand, can be determined

in one of two ways:

* A sequence inherits its type from the objects that are contained within the

sequence.

rA * If a sequence is used within a slot of an operation or within a sequence of a

known type, then the sequence must be of the type that would allow it to be

used in that context.

The two separate inference mechanisms allow the type of all sequences in any flow

that is being defined via one of the standard design methodologies.

5.4.1 Design Methodologies

The issue of design methodologies can play a major role in the development of an

intelligent editor. Some editors support only top-down design, some only bottom-

up. The type-inference mechanisms of PFLE are designed in such a way that PFLE

supports both top-down and bottom-up design equally well.

5.4.1.1 Top-Down Design

A top-down design methodology is one in which the highest level of abstraction is

defined first, using only specifications of the next lowest level as a building block.

CHAPTER 5. SEMANTIC CHECKING 45

When defining a process flow using a top-down strategy, a process engineer would

begin by first defining the entire flow in terms of abstract operations (e.g. the

top level CMOS baseline flow is defined in terms of abstract operations such as

stre.-rief-oxidation and Lpeu-nitride-deposition). The abstract operations are

then defined in terms of lower level operations until the entire flow is eventually

defined in terms of existing operations or primitives.

PFLE supports top-down design in a very natural manner. When a reference is

made to an operation that does not exist, PFLE offers to create that operation. If

the user decides to create the operation (which he must do if he wants to reference

the operation), he only needs to declare the parameters for the newly created op-

eration. There is no need to actually define the body of the new operation at this

point. Simply defining the parameters of the operation supplies enough information

for PFLE to provide full syntax and semantic checking when references are made

to that operation. The user can later re-edit the new operation to define its body. 0 -

5.4.1.2 Bottom-Up Design

A bottom-up design methodology is one in which the first level of abstraction is

defined in terms of primitives. Each succeeding level of abstraction is defined in

terms of the operations already defined on the previous level of abstraction. While

a top-down design is preferable for creating a process flow from scratch, a bottom-

up approach can be better suited for defining a flow based on a set of predefined

operations.

To facilitate bottom-up design, PFLE provides two menu feature that provide a

list of operations that may be referenced at a particular location in the flow. The

first menu function simply provides a list of all the operations that can be legally

referenced at a given location in the flow. The other menu function allows the user

to place a restriction on the objects that should be listed. For example, figure 5-2

shows the menu produced in response to the question "What can I place in this

CHAPTER 5. SEMANTIC CHECKING 46

-treatment slot that contains a reference to :furnace?". Thus the process engineer

can choose from a set of predefined operations that perform the wafer treatment

that he desires.

The followin9 objects m" be used here.
Pove to the desired entr and press an9 key to select.I f..nac-vampup-treatment

furnace-rapdown-treatment
furrace-rapdowi-treatmt-no-arneal

ft-aedyx -trtsnt

•furnic-wfx-treatmet

fiunace

Press any key to pick this choice

Figure 5-2: Menu of options for .treatment slot containing :urnace

In some cases, a combination of top-down and bottom-up strategies may be use-

ful. A top-down approach could be used to define the top level of the flow, followed

by a bottom-up design of the remainder of the flow to make use of predefined oper-

ations. PFLE supports both approaches equally and allows both methodologies to

be used simultaneously without sacrificing its syntax or semantic checking abilities.

t

Chapter 6

The Need for Flexibility

Any well-designed software system should be constructed in a manner that allows

modifications to be made with minimal effort. The desire to build a flexible system

is always present, but, in the case of PFLE, a flexible architecture is a requirement.

The process flow language is a product of ongoing research, thus it is very likely to

evolve in the very near future. PFLE must be able to evolve along with the flow

language if it is to avoid being a very short-lived editor. The presence of multiple

slots within operations also demands flexibility in PFLE (as discussed in section

6.2). Finally, an editor designed with flexibility in mind can be enhanced more

easily, adding functionality to ease the job of the user coding a process flow.

6.1 Overall Design

Figure 6-1 illustrates the overall design of PFLE. The core consists of an internal

representation of the process flow and associated information (e.g. type information

on objects). The remainder of PFLE consists of modules that manipulate informa-

tion in the core. The modules may also access data external to PFLE and reference

modules that are either internal or external to PFLE. One module, for example,

reads a flow coded in the process flow language and creates the corresponding in-

47

CHAPTER 6. THE NEED FOR FLEXIBILITY 48

Fabfors Fabform
interf ace interaction
modules modules

PFLE PFLE

representation internal

modules

flow language
interface
modules

Figure 6-1: Overall Design of PFLE

CHAPTER 6. THE NEED FOR FLEXIBILITY 49

ternal representation. A second module performs the reverse function, thus PFLE

is well insulated from syntactic changes in the process flow language. Insulation

from semantic changes, however, is slightly more difficult, requiring appropriate

modifications to the internal representation. All modifications to the internal rep-

resentation should be made in a manner that least affects the modules accessing

the representation.

Another set of modules provides the interface between PFLE and Fabform. One

pair of modules is responsible for converting between the internal representation

used by PFLE and the parameter files required by Fabform. The remainder of the

Fabform-related modules are called by Fabform whenever the user enters a value into

a field or presses a particular keystroke. These are the modules that determine what

the user has entered in the field and then call the appropriate semantic checking

or syntax enforcing modules. Thus the "low-level" user interface can be changed

to something other than Fabform by replacing the modules that form the interface

between PFLE and Fabform. The majority of the other modules, which perform

the semantic checking, etc., and only access the internal flow representation, can

be reused. It is very likely that even most of the Fabform-related modules could be

reused with minimal modifications.

The remainder of the modules within PFLE operate only in the internal repre-

sentation of the flow and may reference other modules within PFLE. These modules

provide access to objects within the flow, perform type inference and type checking,

etc. The modular design allows relatively painless addition and deletion of modules,

simplifying modifications to PFLE.

6.2 Multiple Slots

The presence of multiple slots within operations provides a unique problem for

PFLE. A process flow coded in the flow language may be processed by several

CHAPTER 6. THE NEED FOR FLEXIBILITY 50

different interpreters. Each interpreter may access a different set of slots from the

operations in the flow. Thus PFLE must possess knowledge about all the possible

types of slots that any interpreter may access. When new interpreters are written

that access previously unknown slots, PFLE must learn how to handle the new slot

type.

The problem of providing support for a new slot type is further complicated by

the fact that each slot type may have a different syntax, different semantics, and

a different set of primitives. The modular design of PFLE provides the framework

for adding knowledge of a new slot type, however, this framework is still too cum-

bersome for performing an enhancement that is likely to be repeated several times

as new slot types are added. Thus PFLE includes an explicit mechanism for adding

knowledge of new slot types.

PFLE maintains a list of known slot types and information about the slot. Each

entry in the list of slot types contains the following information:

* The slot name, e.g. :treatment or :settings

* The prefix to use when numbering operation references entered within that

slot. Refer to the form representing resist-develop in figure 4-2. Entries in the

:change-wafer-state slot have a prefix of "cws-" while those in the :treatment

slot have prefix "tre-".

* The function to convert from an entry in the slot (in the internal representa-

tion) to its corresponding representation in a Fabform parameter file. The in-

ternal representation matches the representation of the process flow language,

with the exception of some additional fields for PFLE generated information.

e The function to convert from a Fabform parameter file representation to the

internal representation of an entry in the slot.

e The function Fabform should execute when the user enters the name of an Lo

CHAPTER 6. THE NEED FOR FLEXIBILITY 51

operation reference within the slot. This function should then call the appro-

priate syntax enforcement and semantic checking functions.

* The function that will return a list of known primitives for the slot. This

function is only called once when PFLE starts. The returned list should be

in the internal representation used by PFLE.

9 The function to lookup primitives for the slot whose names are keywords.

Some slot types, e.g. :aettinga, have information on their available in the

database, allowing primitives to be individually accessed. The large number

of :settinga primitives also makes it impractical to drag information on all

primitives from the database when PFLE starts up. Thus the information is

pulled from the database as it is required.

Adding a new slot type to PFLE requires the addition of an entry into the

list of slot types to describe the new slot. Any new functions referenced by the _

description of the slot will also have to be added. The current implementation of

PFLE contains knowledge of three slot types: :change-wafer-state, .treatment, and

:settings. All three slot types share the functions specified in their descriptions

(since they are very similar in syntax and semantics), with the exception of the

function to lookup primitives for the :settings slot. Thus adding a new slot type

that has syntax and semantics similar to existing slot types is very easy. Adding

a slot with different syntax or semantics requires a little more work since a few

functions to handle the new slot type will have to be defined.

6.3 Adding Functionality

One final consideration in designing PFLE is that PFLE is intended to be much

more than an editor. The syntax and semantic checking abilities of PFLE are

very powerful tools and certainly simplify the coding of a process flow in the flow

CHAPTER 6. THE NEED FOR FLEXIBILITY 52

language. As we use PFLE to define process flows, however, we are bound to find

that we can increase its utility by extending its functionality.

While syntax and semantic checking prove adequate for detecting coding errors

in most programming languages, the process flow language, or rather the manner

in which it is used, demands additional checking mechanisms. The multiple slots

within operations, for example, provide a source of coding errors not found in other

languages. Each slot should contain a different view of the same operation. The cur-

rent implementation of PFLE does not check for consistency between the contents

of slots (largely because such consistency checking is very difficult to implement).

A user could define an operation in which the :change-wafer-state slot describes an

oxidation step while the .treatment slot describes an ion implant treatment. Clearly

the operation is incorrectly coded, yet it is syntactically and semantically correct.

Other useful features could be automatic checking of flows for conformance to lab

S policy, sanity checking (e.g. perform a clean operation before a furnace step), etc.

Another long term goal is to build an expert system for creating process flows.

The user should be able to ask the system to "grow 1000 angstroms of oxide" and

have the program automatically generate a segment of the flow that grows 1000

angstroms of oxide. PFLE should provide a platform on which such an expert

system can be built, allowing users to continue using a tool they are familiar with

while reaping the benefits of extended functionality.

Chapter 7

Results and Directions for Future

Work

7.1 Implementation Status

PFLE is fully operational and supports all of the syntax and semantic checking

described in chapters 4 and 5. An area of concern while developing PFLE was

the validity of the higher level view of the flow (consisting of only operations and

definitions) presented to the user. The process flow language was still in a state

of flux during the early stages of the development of PFLE, thus it was unclear

whether the subset of the process flow language chosen as the basis for PFLE

possessed sufficient expressive power. During the development of PFLE, it has

been tested continually using a coding of the CMOS baseline process. The view of

the flow used by PFLE is able to express the entire CMOS baseline flow, and since

most of the processes used in the Integrated Circuits Laboratory are derivatives

of the CMOS baseline process, PFLE should be able to handle most, if not all, of

the flows that users will want to define. The model used by PFLE may have to

evolve as the flow language itself evolves, but at the present time, it appears that

the currently implemented model is more than adequate.

53

CHAPTER 7. RESULTS AND DIRECTIONS FOR FUTURE WORK 54

Although PFLE is designed to be an editor for novices and expert programmers

alike, no one is forced to use it to edit process flows. PFLE should provide enough

hand-holding to lead a novice user through the steps of defining a process flow while

avoiding the trap of excessively hampering the expert programmer. Even the most

experienced programmers make mistakes, and PFLE can detect those mistakes as

they are made, thereby improving programmer productivity. The current version of

PFLE is capable of reading process flows created using other editors. The coding of

the CMOS baseline process that was used to test PFLE was created using a conven-

tional text editor. Flows edited using PFLE can also be edited using other editors

since PFLE saves flows in the syntax of the process flow language. This ability to

use different editors to manipulate a single process flow will become increasingly

important in the future as different types of editors are developed. Some users may

prefer an editor with a graphical interface, for example, while others may prefer

PFLE.
PFLE is implemented in Common Lisp to facilitate manipulations on the Lisp-

like structures used by the process flow language. PFLE is quite portable and is

currently running under both Allegro Extended Common Lisp and Kyoto Common

Lisp.
1

7.2 Enhanced Semantic Checking

The semantic checking abilities of PFLE are quite extensive, but they still fall short

of being able to detect all semantic errors before run-time. There are three major

areas in which the semantic checking can be improved:

e Type checking of parameters to primitives

'Fabform is written in C but provides Lisp interfaces under Allegro Extended Common Lisp and
Kyoto Common Lisp. The CAFE system currently runs only under Allegro but is in the process of
being ported to Kyoto Common Lisp.

CHAPTER 7. RESULTS AND DIRECTIONS FOR FUTURE WORK 55

* Type checking in conditional expressions

* Consistency checking after modifying a section of the flow

Currently PFLE does not perform any type checking on the values specified

for parameters of operations (or primitives). Since the process flow language, like

the Lisp it is embedded in, is essentially a typeless language, the type of an object

cannot be determined until run-time. The primitives for certain slots, however,

may require parameters to be of a particular type. The :implant primitive for the

.reatment slot, for example, requires a parameter called :element that must be a

keyword specifying the element used as the dopant. Using an integer as the value

of the parameter would clearly be wrong, but PFLE would not catch that error.

Unfortunately PFLE does not currently have such type information available. The

problem of type-checking parameters is further complicated by the fact that the

value of a parameter may be an arbitrary Lisp expression that is evaluated at run-

time. Nevertheless, at least a few semantic errors could be detected even if PFLE

only type-checked parameters whose values were specified as constants.

Conditional expressions were added to PFLE partly as an afterthought. They

appear only in two "low-level" operations in the CMOS Baseline flow and were

initially considered to be one of those rare cases that PFLE could not handle.

Once these "low-level" operations were implemented, no one would have to define

anything similar, so conditionals were thought not to be very important in the first

implementation of PFLE. Since it appears, however, that conditional expressions

may play an increasingly important role in the flow language in the future, minimal

support was added to PFLE to handle conditional expressions. When an if is entered

as the name of an operation in an operation reference, fields are added to the form

for the predicate, consequent, and alternate. Each of the fields may be filled with

an arbitrary Lisp expression, and no semantic checking is done on any of those

fields. A future implementation of PFLE should provide more complete support for

conditional expressions and provide semantic checking for the components of the

CHAPTER 7. RESULTS AND DIRECTIONS FOR FUTURE WORK 56

conditional.

Checking the flow for consistency after modifying a segment of the flow is an

issue that has been deferred in this implementation of PFLE. All semantic checks

are performed based on the state of the flow while an object is being edited, but

the impact of editing the object is not considered. For example, consider a process

flow that contains two operations: loo and bar. Suppose that foo takes three pa-

rameters, and bar references foo and specifies values for the three parameters. foo

is subsequently edited and one of the parameters is deleted, resulting in a defini-

tion of foo that only has two parameters. The new definition is syntactically and

semantically correct, but bar is now semantically incorrect because it specifies too

many parameters for foo. PFLE does not currently perform any such consistency

checks because a brute-force method for checking consistency would be extremely

expensive in terms of computation time. Nevertheless, it is an important issue to

consider for future implementations.

7.3 Hiding Lisp Syntax

Chapter 4 describes the view of the flow presented to the user. This view differs

significantly from the syntax of the underlying process flow language. It provides

a higher level representation that is simpler to understand and hides the Lisp-like

syntax of the process flow language that tends to frighten non-programmers. While

PFLE hides most of the Lisp syntax, it does not hide all of it. Two places where

the Lisp syntax still appears are:

" conditional expressions

" values of parameters in operation references

The problems associated with conditional expressions was discussed in the preceding

section. The Lisp syntax in the value of a parameter can appear either in the form

CHAPTER 7. RESULTS AND DIRECTIONS FOR FUTURE WORK 57

of a function application (e.g. "(+ minutes 10)") or in the form of notation for

an abstract data type (e.g. "(:hours 2 :minutes 15)"). There doesn't seem to be

an easy way to eliminate these expressions without building a method of mapping

generic Lisp expressions to a forms-based representation. If the CMOS baseline

process is representative of the types of process flow, users will be defining, function

application expressions are rarely used as values to parameters. The parenthesized

notation for abstract data types, e.g. time, is fairly common, but that notation

seems like a very easy one for users to learn.2 It should also be possible to develop

a forms-based representation for each of the abstract data types and eliminate

parentheses in data type expressions altogether.

7.4 Support for the X Window System

The current version of PFLE is based on Fabform, which runs only on ASCII ter-

minals. Under the X window system, PFLE may be run within an xterm window.

PFLE provides extended functionality under X by allowing the user to create addi-

tional windows so that he may simultaneously view multiple flow language objects.

Only a single object may be modified at a time, however, to avoid consistency

problems among multiple editing windows.

One area of future work should be additional support for the X window sys-

tem. It is not clear whether PFLE itself should be modified to directly support X

or whether X support should be incorporated into Fabform. The greatest overall

benefit will probably be derived by upgrading Fabform and incorporating a corou-

tining. mechanism in PFLE to manage multiple windows simultaneously. The job of

adding support for X will become much easier as the X toolkit matures and more

powerful widgets are developed (such as the fabled xterm widget).

2 They can probably learn the construct by simply looking at the CMOS baseline flow and coding

by example.

CHAPTER 7. RESULTS AND DIRECTIONS FOR FUTURE WORK 58

7.5 Database Support

PFLE currently accesses the database (via the Gestalt functional data model) to

obtain information about primitives for the :aettings slot of an operation. Informa-

tion on primitives for other slot types is currently read from files because it is not

available in the database. As more information is added to the database, PFLE

should be modified to access that information.

S.

Appendix A

The PFLE User Manual

59

APPENDIX A. THE PFLE USER MANUAL 60

PFLE Users Manual
Rajeev Jayavant

Revised August 25, 1988

A.1 Introduction

A process flow is the sequence of operations performed on a silicon wafer in order
to fabricate integrated circuits. PFLE is an intelligent editor designed to facilitate
the task of encoding a process flow in the process flow language. It is intended
to be used by a wide range of users, from novices to experienced programmers.
PFLE provides a number of features that assist less experienced programmers,
while seasoned programmers will benefit from PFLE's error detecting mechanisms.

Users that have coded process flows using a text editor will immediately notice that
PFLE presents the flow in a format that is very different from the representation

£9. used by the process flow language. The process flow language is embedded in
Common Lisp and shares the parenthesized syntax of Lisp. PFLE provides a forms-
based interface to the process flow language in which each object is represented by
a form that the user can edit. In addition, PFLE provides a view of the process
flow that is composed only of two classes of objects: definitions and operations.
Definitions are used for specifying constants, e.g. define gateoztusbe to be the name
of the furnace tube in which gate oxide is grown. The remainder of the process flow
can then refer to gateoztusbe rather than the actual name of the furnace tube.

Operations are used to specify the actual sequence of processing steps performed
on a wafer. An operation may be parameterized and is defined in terms of other
operations (either user-defined or primitives supported by an interpreter). Thus a
process flow is defined in terms of a hierarchy of operations - the top level of the
hierarchy specifies the most abstract view of the flow while the lowest level of the
hierarchy is defined in terms of primitive operations.

Although PFLE presents a view of the flow that consists only of operations and
definitions, the process flow language supports a number of other object types, e.g.
sequences. PFLE attempts to simplify the view of the flow by making all objects
in the process flow language "look" like operations or definitions. Thus there are
actually two different types of operations in PFLE:

APPENDIX A. THE PFLE USER MANUAL 61

* operations with multiple slots I

* operations without slots

An operation with multiple slots may only be referenced within another operation
with multiple slots and may not be referenced within a slot of an operation. An
operation without slots, on the other hand, may be used within a slot of an operation
with multiple slots. If the user defines a process flow using a top-down design
methodology, PFLE will automatically create the proper type of operation (with
multiple slots or without). In any case, the semantic checking mechanisms of PFLE
will prevent incorrect references to operations of the wrong type, thus the user does
not have to worry about the different types of operations.

This manual attempts to describe the operation of PFLE and how it can be used
to create a new process flow or edit an existing flow. It first describes the various
commands supported by PFLE and then illustrates a sample session in which we
create a very simple process flow using PFLE. Even the most detailed manual,
however, cannot really teach a user how to use a piece of software. Only hands-on
experience can provide a true understanding of how something works, thus the user
is encouraged to experiment with PFLE on a sample process flow while reading this
manual.

A.2 Entering and Exiting PFLE

PFLE can be started from the Wafer Menu in CAFE. Two options should be pro-
vided:

e Edit process flow

o View process flow

If you choose to view a process flow, PFLE will operate in "read-only" mode and
prevent any modifications to the process flow. PFLE will first prompt for the name

'The process flow language supports operations with multiple slots for specifying different views
of the same processing step. The process flow language itself does not specify which slots are defined
and what their semantics are. Each interpreter assigns semantics to slots that it is interested in.
The two-stage process model specifies the flow in three levels: change-wafer-state, treatment, and
settings. The ckange-uiafer-state view specifies the change in the wafer state in abstract terms,
e.g. grow 1000 angstroms of oxide. The treatment view specifies wafer treatments in terms of
temperature, gas concentrations, treatment time, etc. The settings view specifies the actual settings
of a particular machine that will process the wafer. Equipment models and process simulators can
be used to convert from one yew of the flow to another.

APPENDIX A. THE PFLE USER MANUAL 62

of the file containing the process flow. The ".fl" suffix is automatically added if it
is not specified. PFLE will then read the process flow from the file and display the
top-level view of the flow (refer to section A.4 for more information). If the file does
not exist, PFLE will assume that you want to create a new flow.

To exit PFLE, simply enter ctrl-X ctrl-C when the top-level view of the flow is being
displayed.' If the process flow was modified, PFLE will ask whether the updated
flow should be written. Answering anything other then "y" will discard any changes
made to the flow during the editing session.

A.3 Basic Commands

PFLE relies on Fabform to provide the user interface, thus all of the commands
supported by Fabform are supported by PFLE. The basic commands for cursor
movement and exiting the editor are analogous to those for Emacs. Please refer to
the Uaer Guide to the Fabform U Ter Interface for further details. The remainder of
this manual will describe commands specific to PFLE.

The command set of PFLE consists of two subsets:

* commands that are always available

* commands specific to an operating mode of PFLE. The three main operating
modes of PFLE consist of:

1. display top-level view

2. edit an operation

3. edit a definition

The following table briefly describes the subset commands that are available in all
operating modes. More detailed descriptions of the commands are available in the
remainder of the manual, along with descriptions of commands specific to operating
modes.

ctrl-X ctrl-C Exit current screen. This is actually a Fabform command, but it
of special importance within PFLE. PFLE invokes Fabform each time a new
object is edited or viewed. Pressing ctrl-X ctrl-C will terminate the latest

2It may be necessary to press ctrl-X ctrl-C multiple times to return to the top-level view of the
flow. Refer to the following sections for more information.

L..

APPEND IX A. THE PFLE USER MANUAL 63

invocation of Fabform and resume editing the object that was previously being
displayed.

ctrl-X ctrl-E Edit the object specified at the current cursor position. This com-
mand can be used to quickly walk down the hierarchy of operations by moving
to the desired operation reference within an operation and pressing a keystroke
to edit the referenced operation.

ctrl-X E Edit an object. PFLE will prompt for the name of the object to edit.
If the object does not exist, PFLE will optionally create the object (after
displaying a menu to query the type of object to create).

ctrl-X ctrl-V View the object specified at the current cursor position. Similar to
ctrl-X ctrl-E except that the object cannot be accidentally modified.

ctrl-X V View an object. PFLE will prompt for the name of the object to view.
The object being viewed cannot be accidentally modified.

ctrl-X 2 Copy window. If PFLE is being run under the X window system, a new
window containing the contents of the current window can be created. The
new window can only be used to view the object being displayed, and only
Fabform commands will be available in the new window (PFLE commands
will not work in the new window). All commands will work in their usual
manner in the original window.

ESC N Move cursor to the next operation reference. A repeat count may be
specified using ctrl-U.

ESC P Move cursor to the previous operation reference. A repeat count may be
specified using ctrl-U.

A.4 The Top-Level View

The top-level view of the flow displays the names of all of the objects in the process
flow. The commands described above can then be used to edit or view any of the
objects in the process flow, as well as to create new objects. The top-level provides
a number of additional commands for deleting and creating objects. The following
table describes commands specific to the top-level view.

ctrl-X ctrl-D Delete object. Deletes the object at the current cursor position after
confirming the user's intentions. If a repeat count of N is specified using ctrl-
U, PFLE will confirm the deletion request for each of the N objects beginning
with the object under the cursor. PFLE does not currently perform any
consistency checking to see whether the deleted object is required by any

APPENDIX A. THE PFLE USER MANUAL 64

other object in the flow, thus the user should be careful about what he or she
deletes.

ctrl-X ctrl-I Insert flow. PFLE will prompt for the name of a file from which to
read a flow. Any objects which are defined in the new flow but are not defined
in the flow being edited are appended to the flow being edited. This command
is useful for defining a new flow using pieces of an existing flow. After the
new flow is read, some type inference is performed and a new top-level view
is created.

ctrl-X ctrl-R or ctrl-X R Recompute the top-level view. When objects are cre-
ated using ctrl-X ctrl-E, the top-level view is not automatically updated to
include the new object. This command can be used to force recomputation of
the top-level view.

ESO T Redo type inference. When a process flow is inserted, PFLE performs
some incremental type inference to determine the types of the newly included
objects. In some cases, this incremental type inference may be insufficient
to provide the information required for PFLE to perform semantic checking.
Pressing S T will force PFLE to discard all type information and perform
full type inference again. By only performing incremental type inference when

S. inserting flows, PFLE reduces the time required to insert multiple flows while
preserving full functionality in most cases.

A.5 Editing Definitions

A definition can be edited by using any of the commands for editing or viewing an
object. In addition, a definition can also be created (and edited) by referencing the
undefined object within an operation (refer to section A.6.3.2 for details).

The form representing a definition consists of only one editable field - the value
being assigned to the object. The value may be any arbitrary Lisp expression.
PFLE does not currently perform any semantic checking on the use of definitions,
thus the user should be careful to ensure that the values assigned to objects are
semantically valid.

PFLE does not support any special commands while editing a definition. Once the
field containing has been filled in, press ctrl-X ctrl-C to exit the definition screen
and save the new definition. PFLE will then return to editing the object that was
previously being edited, or to the top-level view if no other object was being edited.

• • • Md | I i P a2

APPENDIX A. THE PFLE USER MANUAL 65

A.6- Editing Operations

Operations, like definitions, can be edited using any of the commands for editing
or viewing objects in the process flow. New operations can also be created by
referencing the undefined operation within another operation. Since PFLE can
create unknown operations when they are referenced, defining a process flow using
a top-down design methodology is greatly simplified.

The form representing an operation contains many different types of fields corre-
sponding to the various components of an operation:

e parameters for the operation

o a comment describing the function of the operation

9 references to other operations and the values of parameters to the other op-
erations

* each slot within an operation with multiple slots may contain references to
other operations

PFLE provides commands for creating, deleting, and specifying values for the vari-
ous types of fields, thereby providing the means for editing operations. The actions
of the PFLE commands for editing operations, however, can slightly depend-
ing on which field the cursor is positioned upon. For example, E J ctrl-I always
inserts a field before the field the cursor is positioned upon. The type of field that
is inserted, however, depends on the field that the cursor is positioned upon when
the command is executed. The basic commands supported while editing an opera-
tion appear in the table below. The following sections describe the variations their
actions depending on the position of the cursor.

ctrl-X ctrl-D Delete the field the cursor is currently on.

ctrl-X ctrl-I or ctrl-X I Insert field after the field the cursor is currently on.
ctrl-U may be used to specify a repeat count.

ctrl-X ctrl-M or ctrl-X M Choose operation o reference from a menu

ctrl-X ctrl-U or ctrl-X U Create an unnamed operation within the current op-
eration. Refer to section A.6.3.1 for details.

S I Insert field before the field the cursor is currently on. ctrl-U may be used
to specify a repeat count.

S M Choose operation to reference from a menu containing operations which
reference a specified object. PFLE will query the name of the desired object.

.. .. L• . 1 - l i |

APPENDIX A. THE PFLE USER MANUAL 66

A.6.1 Parameterized Operations

Any operation defined using PFLE may be parameterized by simply specifying
the parameters to the operation when the operation is defined. Each parameter
is represented by two fields. The leftmost field is used to specify the name of
the parameter. The rightmost field may be used to specify the default value for
the parameter. Whenever a parameterized operation is referenced, values may be
specified for any of the parameters. If the value for a particular parameter is not
specified, its default value is used (or NIL if no default is specified).

The fields for specifying parameter names and default values appear at the top
of the form, if any parameters are specified. Additional fields may be created by
moving onto an existing parameter field or onto the comment field (see below) and
pressing one of the keystrokes for inserting a field.

A.6.2 Descriptive Comment

Each operation may optionally contain a comment describing the purpose of the
*' operation. The field corresponding to the comment appears below the fields for

specifying parameters, or at the top of the form if no parameters have been spec-
ified. The comment may be any string of characters up to the length of the field.
PFLE displays the start of the comment of an operation wherever the operation is
referenced within another operation, thus comments are a very useful documenta-
tion tool for not only the operation containing the comment but for any operations
that reference it.

A.6.3 References to Other Operations

The main body of an operation consists of one or more sets of references to other
operations. An operation with multiple slots contains a set of references for each
slot in addition to a set for references to other operations with multiple slots. An
operation without slots contains a single set of references to other operations.

Each operation reference is represented by a a field containing the name of the
operation being referenced, as well as fields for specifying values for parameters of
the operation being referenced. The fields are accompanied by a set of associated
information:

* A sequence number indicating the position of this operation reference within
the set of references is displayed to the left of the operation name. If the

APPENDIX A. THE PFLE USER MANUAL 67

reference is to an operation with multiple slots, the sequence number will be
an integer. If the reference is to an operation with a single slot, the sequence
number will be an integer with a prefix corresponding to the name of the slot
that the operation may be referenced in.

* The first line of the comment describing the operation being referenced is
displayed below the operation name, if the comment is defined.

* The names of the parameter to the operation are displayed to the left of the
fields in which the values of the parameters may be entered. There is no need
to remember the order of parameters to an operation since the name of the
parameter is always displayed next to the value being specified.

Operation references are inserted and deleted as monolithic units by moving the
cursor onto any field within an operation reference and pressing a keystroke for
inserting or deleting a field. When an operation reference is inserted, PFLE inserts
an empty field for the name of the operation and provides a step number with the
same prefix as the field which the cursor was on when the insert command was
given. In an operation with multiple slots, PFLE ensures that at least one field for
an operation reference remains in each of the slots at all times, even though that
field may be empty. Thus it will always be possible to create an operation reference
in any slot.

A.6.3.1 Inserting Operation References

Inserting an operation reference is actually a two-step process. The first step is to
create a blank field for the reference. As described in the previous section, a blank
field can be created by moving to a an existing operation reference and pressing one
of the keystrokes for inserting a field. PFLE initially provides one blank field per
slot for an operation reference, so there may not be a need to create a new field.

The second step is to actually specify the operation to reference. This can be done
in a number of ways:

* Enter the name of the operation into the appropriate field by typing the name
into the field and pressing IRETURN or moving the cursor to another field.
If the specified operation doesn't exist, PFLE will offer to create it. If a new
operation is created, PFLE will begin editing the newly created operation. It
is important to define all parameters for the newly created operation before
returning to the original operation being edited. PFLE requires specifications
of parameters to perform semantic checking of references to operations.

I I . l I

APPENDIX A. THE PFLE USER MANUAL 68

* Use one of the menu functions to choose the operation to reference. Both
menu functions will display a menu of operations that may be referenced in the
current context from which the desired operation may be chosen. The menu
function invoked by S M restricts the menu of operations to those which
contain references to an object specified by the user. Both menu functions can
be useful when defining a flow based on previously defined operations (such
as those copied from another process flow).

" Define an unnamed operation. An unnamed operation is an operation with
multiple slots that is contained entirely within the operation that references
it. Unnamed operations do not appear in the top-level view of the flow. The
only way to edit an unnamed operation is to first edit the operation that
references it, move the cursor to the reference to the unnamed operation, and
then press ctrl-X ctrl-E. Unnamed operations cannot be parameterized, but
they may reference the values of the parameters of the enclosing operation.

Once the operation has been specified, PFLE replaces the fields for the empty
operation reference with fields applicable to the specified operation. New fields are
created for specifying values for the parameters to the operation and the comment
describing the operation is displayed.

A.6.3.2 Specifying Values of Parameters

The value of a parameter to an operation may be any arbitrary Lisp expression.
PFLE does not perform semantic checking on arbitrary Lisp expressions, thus the
user should be careful to ensure that the values specified for parameters to opera-
tions are semantically correct.

If the value specified is an identifier, however, PFLE will ensure that the identifier
is valid in the current context. If the identifier is undefined, PFLE provides a menu
of options for correcting the problem rather than simply complaining about illegally
using an identifier. The choices provided to the user are summarized below.

e re-edit the value of the parameter. In most cases, the error will simply be
caused by mistyping the name of the identifier, thus the first menu option
allows the user to correct his typing mistake.

* define the identifier globally. Perhaps the user forgot to define the identi-
fier using a definition. Choosing this option allows the user to create a new
definition and then return to editing the operation he was editing.

* make the identifier a parameter to the operation. Adding a parameter would
normally take several keystrokes, yet it can be done with a single keystroke

APPENDIX A. THE PFLE USER MANUAL 69

via this menu option.

" make the identifier a keyword. Perhaps the user forgot to type the colon.

* make the identifier a quoted string. It's easy to accidentally type nanospec
instead of "nanospec".

* use the identifier anyway. The user may know what he is doing and will define
the identifier at a later time.

A.7 Creating a Simple Process Flow

This section describes how a very simple process flow can be created using PFLE.
The actual flow that is defined is not important since since this example will illus-
trate all of the concepts necessary for defining a much more complex process flow.
The particular flow that will be created is one in which we begin with a bare silicon
wafer, grow a thick field oxide, and then pattern an active area region in the oxide.

Begin by selecting the "Edit process flow" entry in the Wafer menu in CAFE. When
prompted for the name of the flow to edit, specify simple, forcing PFLE to look for
the file "simple.fl". Since the file doesn't exist, the top-level view of the flow will
not contain any objects. In order to make our job a little easier, we'll define our
simple process flow in terms of operations defined in an existing process flow (such
as the CMOS Baseline process flow). First we'll insert the contents of the existing
flow by pressing ctrl-X ctrl-I and specifying the name of the file containing the
existing flow. The top-level view should now be full of objects. We can also delete
any unneeded operations using ctrl-X ctrl-D, but at this point we may not know
exactly what we need and what can be deleted.

Now that we have all of the underlying operations we need, we can begin our real
job. In most cases, designing a new process flow is much easier using a top-down
approach, thus that is the path we shall take. We begin by defining the top level
of our operation hierarchy by creating the operation simple. Press ctrl-X ctrl-E
to edit an object and specify simple as the name of the object to edit. PFLE will
then display a menu from which to select the type of object to edit, as illustrated
in figure A-1. Select the option that creates "a flow or operation with n slots".

PFLE will then present a screen representing simple, an operation with multiple
slots. Enter the descriptive comment, answer "yes" to the question asking whether
the operation can be a complete process flow, and move the cursor to the field
next to the number "1". This is the field for entering the first reference to another
operation with multiple slots. We would like to define simple in terms of two
operations, grow-field-oxide and pattern-active-area, so we will need another slot for

APPENDIX A. THE PFLE USER MANUAL 70

SIWlE doem't exist. Select tVe of object to cat

A flow or operation with n sloto
A definition (for use as a parameter)
A list of CIARGE-IWER-STATE objects
A list of TEATfET objects
A list of SETTINGS objects
Use a coft of an existing object
Miort editing object

Press an kea to pick this choice

Figure A-i: Menu for selecting type of object to create

an operation reference. Press ctrl-X ctrl-I to create a second field for entering an
operation reference. The screen should now resemble the one in figure A-2.

Enter "grow-field-oxide" in the field next to the "1" and press I RETURN PFLE
should complain that grow-field-oxide is not defined and offer to create it for you.
Answer "y" to begin editing grow-field-oxide. Notice that PFLE did not ask what
type of object to create since it knows only a single type of object can be referenced in
that particular context. Since we are doing a top-down design, it is not necessary to
define the body of grow-field-oxidation at this point. We must, however, define any
parameters that are required, and it is always a good idea to fill in the descriptive
comment to aid in documentation. Since grow-field-oxide does not require any
parameters, simply fill out the comment field and press ctrl-X ctrl-C to return to
simple. The screen should now resemble the one illustrated in figure A-3.

Similarly, enter "pattern-active-area" in the field next to the "2" and create the
new operation. Let's suppose that pattern-active-area requires a single parameter,
mask, thus we must define the parameter before returning to simple. Move the
cursor to the comment field and press ctrl-X ctrl-I to insert fields for defining
a parameter. Enter the name of the parameter in the leftmost field, the default
value for the rightmost field, and description of the operation in the comment field.
The screen should now resemble the one shown in figure A-4. We can then return
once again to simple and complete the top level description of the flow. Figure A-5
illustrates the completed top level.

The steps illustrated for defining the top level of the simple flow can be used repeat-

APPENDIX A. THE PFLE USER M A N AL71

simple

Can this operation be a complete flow? M

2

:change-wafer-stata

IThe namme of the operation to reference

Figure A-2: sim ple with fields for two references

simple

Can this operation be a complete flow?

0 Crow 5000 wwgetrom of oxide an a bare silicon wafer

2

:c~wnge-afer-stte

cus-i

,The name of the operation to referenc

Figure A-3: sim ple with reference to grow-field-ozide

APPENDIX A. THE PFLE USER MANUAL 72

Can this operation be a cmwlete flow?

:treatrient

tlie, description of Wat this operation dorn

* Figure A-4: pattern-active-area with parameter defined

H -iiI prcSsfo a rw-fet yd rjpten-tl cieae

Can this operation be a coqilete f low?

1
Grow 5W0 wA~gtroms of oxide on a bare silicon waFer

2
Applq photoresist, define active area, etch oxide, remove resist.

mask

:chae&-vaf er-state

ctes-i

Value for this pareter of operation

Figure A-5: Completed definition of sim ple

APPENDIX A. THE PFLE USER MANUAL 73

edly to define the lower levels of the flow. grow-ield-ozide can be defined in terms of
operations that perform an RCA clean, grow the oxide, and inspect the thickness of
the oxide. Similarly pattern-active-area can be defined in terms of operations which
perform the photomask step, etch the oxide, and strip the resist. All of the lower
level operations should already be defined in some other process flow, such as the
CMOS Baseline flow. Operation references can also be hnerted within the slots of
an operation with multiple slots using the techniques described above. Simply move
the cursor to a field within the desired slot before inserting new fields or entering
names of operations to reference.

To exit PFLE, press ctrl-X ctrl-C until the top-level view reappears. Press ctrl-
X ctrl-C one more time to exit the top-level view. PFLE will ask whether the
updated flow should be written. Answer /y' to write the flow - any other response
will discard any changes made to the flow.

Appendix B

Users' Guide to Fabform

74

74

APPENDIX B. USERS' GUIDE TO FABFORM 75

User Guide to the Fabform User Interface
Rajeev Jayavant

Revised August 3, 1988

Fabform is a generalized form editor which serves (or will serve) as the user interface
for several utilities in the cafe system. This document describes the basic operation
of Fabform from the user's standpoint. A description of using Fabform from a
programmer's standpoint will be available in a separate document. All bug reports
should be sent to "fabformQcaf.mit.edu".

APPENDIX B. USERS' GUIDE TO FABFORM 76

B.1 Introduction
Fabform is a generalized form editor which serves as the user interface for a number
of utilities in the cafe system. Thus most users will never invoke Fabform directly,
but rather will use Fabform as a means of communicating with some other program1

The basic concept of a form editor is quite simple. The user is presented with
a form, or template, containing a number of blank fields which he may then fill
in. Fabform displays a screenfull of information and allows the user to move to
the various fields in the form. The fields are displayed in either reverse video or
underline mode depending on the abilities of the terminal.

The value of a field may be entered or changed by the user only in accordance
with a set of rules specified for the form. For example, a field in a form may only
be allowed to contain floating point numbers. Another field may be constrained to
contain only a member of some specified set (eg. "angstroms" or "nanometers"), and
other fields may be specified as "read-only", allowing no modifications whatsoever.
Fabform will enforce such restrictions, displaying messages if the rules are violated.

B.2 Basic Operation

Emacs users will notice that Fabform is similar to Emacs in terms of the screen
display and the functions bound to most keys. The arrow keys are also supported
for cursor movement on VT100, VT200, VT52, HEATH, and related terminals.
The exact operation of Fabform will vary from application to application because
much of the operation depends on the particular form being edited. Nevertheless,
this document should provide enough information to use Fabform without too much
trouble.

B.2.1 Screen Layout

Fabform will display as much of a form as will fit on a screen, allowing the user to
scroll vertically through the form if necessary. The last two lines on the screen are
used to display status and help information. The second last line is the status line
and provides the following information:

modified flag The first few characters on the status line indicate whether the form
has been altered since it was last saved. A "**" indicates that changes were
made, "--" indicates no changes, and "%%" indicates that the entire form is
read-only so changes couldn't have been made. These indicators are just like
those used by Emacs.

1Such as the fabrication interpreter

APPENDIX B. USERS' GUIDE TO FABFORM 77

Information area Just to the right of the modified flag is an area that can be
used to display any short message chosen by the application using Fabform.

time The current time (in 12 hour mode) is displayed in the center of the status
line and is updated once a minute.

relative position The right half of the line contains a small indicator of the rel-
ative position of the displayed screen to the top of the form. The position
is specified as in Emacs and may be "Top", 'Bot", "All", or a percentage
representing the position of the first line displayed on the screen relative to
the first line of the form.

The last line on the screen normally displays some help information relating to
the field that is currently chosen by the cursor. If an error occurs, the last line of
the screen is used to display the error message until the another key is pressed.

B.2.2 Command Summary

More detailed descriptions of some of the commands can be found in later sections
of this document. The basic commands are:

ctrl-A if the field can only contain a set of restricted choices, advance to the next
valid choice.

ctrl-B move back one field

ctrl-F move forward one field

ctrl-G abort command (really only useful in extended commands)

ctrl-L * Move currently selected field to the center of the screen.

e If the field is already at the center, refresh the display.

ctrl-M or IRETURN e Enter default value if the field has a default.

" Enter current time and date if the field is a blank date field

" Otherwise just advance to next (preferably editable) field.

ctrl-N move down to field on next line

ctrl-P move up to field on previous line

ctrl-Q if the field can only contain a set of restricted choices, reverse to the previous
valid choice

ctrl-R scroll screen down one line

n ! p i -i •

APPENDIX B. USERS' GUIDE TO FABFORM 78

ctrl-S scroll screen up one line

ctrl-U enter a repeat count for any cursor movement command

ctrl-V scroll screen forwards by 3/4 of the screen height

ctrl-W delete field

ctrl-X introduce extended commands

ctrl-Y restore field to the value it had before it was visited

ctrl-Z suspend the editor and return to the shell. The editor can be restarted using
the "fg command

ESC introduce more extended commands

DELETE] Delete backwards one character.

ctrl-X extended commands

ctrl-G abort command

ctrl-X ctrl-C exit editor. If the form has been modified, the user is asked whether
the changes should be saved. If all "required" fields have been filled in, the
user is asked whether he has completed all work on the form. If all work "-
not complete, the editing can be resumed from the point the editor is exited.

Some applications use Fabform in impatient mode, in which case the user
will not be asked whether he wants to exit or save changes. All changes will
automatically be saved and Fabform will exit.

ctrl-X ctrl-S save the state of the edit session

ctrl-X ctrl-T like ctrl-X ctrl-C but allows the user to declare that he is through
editing a form even if some normally required fields are left blank. An edit
session terminated via ctrl-X ctrl-T normally will not be continuable whereas
one terminated by ctrl-X ctrl-C will be.

ctrl-X ctrl-W write a printable description of the current state of the form to a
file. Fabform will prompt for the filename to use. Full pathnames must be
specified if the file is to reside in any directory other than the current working
directory or one of its decendants. 2 The file can later be printed using lpr or

2ie. Filenames should not begin with a - unless the actual name of the file (as displayed by Is)
does.

APPENDIX B. USERS' GUIDE TO FABFORM 79

displayed using more or ul. ctrl-X ctrl-W is only useful for producing some
printable output from Fabform - ctrl-X ctrl-S must still be used to save the
state of the edit session.

ctrl-X ctr-Z suspend the editor and return to the shell. The editor can be
restarted using the 'fg" command.

ctrl-X ? display help information

ESC extended commands

ctrl-G abort command

S-C < move to beginning of form

FE-SC > move to end of form

ESC V scroll screen backwards by 3/4 of the screen height

ESO X execute a shell command. The user is prompted for thle command to be
executed.

FES DELETE delete backwards until a whitespace is found.

ESC ? display help information

B.3 Cursor Movement
The cursor can be moved from field to field using either the arrow keys or ctrl-B,
ctrl-F, ctrl-N, and ctrl-P. The ctrl-N and ctrl-P commands attempt to place the
cursor on a field directly above or below the current field. If a suitable field cannot
be found, the next-closest field is chosen.

The ctrl-V, ESC V, ctrl-R, and ctrl-S commands attempt to keep the cursor
on the current field while scrolling through the form. If the current field is moved
off the screen, an attempt is made to move to a field on the new screen closest to
the previoul chosen field.

The [ESC < and SCI > commands move to the first and last fields in the
form, respectively.

If there is no visitable field on a screen, the cursor will move to the lower right
corner of the display, and all editing operations will be disabled until a field is
brought back on the screen using one of the cursor movement commands or the
ctrl-L command.

APPENDIX B. USERS' GUIDE TO FABFORM 80

The RETURN key can also be used to advance from field to field. The direction
of the advance is dependent upon the particular application - some applications
prefer advancing towards the right to the next editable field while others advance
downwards to the next visitable field. Care must be taken in using the RETURN
key to advance the cursor since it will also fill in default values of fields (refer to
upcoming sections on default and date fields).

B.4 Editing Field Entries

There are only four commands available for editing the value entered in a field.
DELETE deletes the last character in the field while ES FDELETE deletes
characters backwards from the end of the field until a space is found. The entire
field can be deleted using ctrl-W, and ctrl-Y can be used to return a field to the
value it had before the cursor was moved onto it.

B.5 Validation of Field Entries

Fabform recognizes a number of field types and restricts a user's input to conform
to the requirements of the field. Thus, the actions Fabform takes while the user is
entering a value into a field depends upon the characteristics of the field.

B.5.1 Unrestricted Fields

Unrestricted fields may contain any printable character (and spaces). Of course,
the length of the field is also a limiting factor.

B.5.2 Integer Fields

An integer field can be composed of any string of digits with an optional preceding
%"- Attempting to enter anything else will result in an error message and the
erroneous input will be disregarded.

B.5.3 Floating Point Fields

A floating point field can be composed of digits, ".", "+", "-", and "e" or "E". If
any other character is typed, an error message will be displayed. An error will also
occur if the entry is not a properly formatted floating point number (optionally in
scientific notation) and an attempt is made to either move to another field or save
the field. The entered value is also checked for overflow.

APPENDIX B. USERS' GUIDE TO FABFORM 81

B.5.4 Lisp Expression Fields

Basically any valid printable representation of a lisp object (symbol, number, list,
string, etc.) may be entered. Fabform will flash the matching open parenthesis
when a close parenthesis is entered.

B.5.5 Oneof Fields

Oneof fields can only contain one out of a specified set of choices. A user's input into
a oneof field is checked against all possible choices as the entry is made. If Fabform
detects that the user is not entering a valid choice, an error message is displayed.
If, on the other hand, the user enters enough characters to uniquely specify a valid
choice, the remainder of the choice is automatically entered. Fabform will also
attempt to complete partial matches of the user's input to the available choices,
thereby minimizing the amount of typing required. Case conversion is performed
on the user's input, if necessary, to match the valid choices.

If the user does not know what the possible choices are, or if he just wants to
advance through them one by one, the ctri-A and ctrl-Q keys may be used. If the
choice has been partially, but not uniquely, specified, pressing ctrl-A or ctrl-Q will
display the first choice that matches the paztial specification.

B.5.6 Default Values

All of the field types described above may have an associated default value. The
help line at the bottom of the display will contain "(default available)" whenever a
field with a default value is selected. The default value, however, is not used unless
it is explicitly selected by pressing I RETURN or ctrl-M when the field is selected.
If a different value is entered for the field, the default is lost.

B.5.7 Date Fields

Date fields are similar to Default fields except that the current date/time is the
default. Simply press FRETURN to enter the current date into the field. Only the
month and day need to be entered if the current date is not wanted. The defaults
for the remaining (unspecified) parts of the date are the current year for year and
zero for hours, minutes, and seconds.

B.5.8 Read-only Fields

Read-only fields, as their name implies, cannot be modified. When the cursor is
on a read-only field, the help line at the bottom of the screen will display "(read
only)". Fabform will display an error message if you attempt to modify a read-only
field.

APPENDIX B. USERS' GUIDE TO FABFORM 82

The read-only status of a field can change over time. A form may contain fields
that change to read-only status after a save operation .

B.6 Saving Entered Field Values

The field values entered by the user are not saved until an explicit save is performed
either via ctrl-X ctrl-S or during exit from Fabform. If the program dies for any
reason (eg. due to a machine crash), any changes made since the last save will be
lost. Thus it is advantageous to save often.

On the other hand, some forms contain fields that become read-only after a save.
Thus extra care should be taken to ensure that the entries in such fields are correct
before performing a save.

B.7 Exiting Fabform

B.7.1 Temporary Suspension

Fabform may be temporarily suspended using either the ctrl-Z or ctrl-X ctrl-Z
4. commands. Fabform can restarted later using the 'fg" command from the shell or

by selecting the appropriate choice in the "Tasks" submenu in the wand.
Some applications may disable the the suspension mechanism, in which case

ctrl-Z and ctrl-X ctrl-Z will only generate a warning message. In the absence of
the suspension mechanism, the only way to exit Fabform is via one of the quit
commands.

The most common reason for using a suspension mechanism is to temporarily
stop a process, execute some other commands in the shell, and then resume the
original process. If the suspension mechanism is disabled, shell commands can still
be run using the ETC X command.

B.7.2 Permanent Exit

There are two commands for permanently exiting Fabform: ctrl-X ctrl-C and ctrl-X
ctrl-T. In many applications, there is no difference ,etween the two commands, with
ctrl-X ctrl-T defaulting to ctrl-X ctrl-C. In most cases, ctrl-X ctrl-C should be used
to exit Fab'orm - ctrl-X ctrl-T is normally used only whcn the user has finished all
editing ' of a form but wishes to leave some fields blank. The properties of the two
commands can be summarized as follows:

%g. to prevent history from being modified
4 ie. he never wants to edit that particular form again

k . ~ - ... ~ * i. E . . m .. p a •. . .

APPENDIX B. USERS' GUIDE TO FABFORPM 83

ctrl-X ctrl-C This can be thought of as a long term suspension. If any changes
have been made, the user is asked if the changes should be saved before
exiting (allowing a quick way to abandon any changes made to the form).
Fabform terminates after confirming the user's intentions 6 , but indicates to
its associated application that editing of the current form is to be resumed at
some later time. If, however, all fields in the form have been filled in, ctrl-X
ctrl-C defaults to ctrl-X ctrl-T.

ctrl-X ctrl-T Fabform saves all changes and exits after confirming the user's
intentions.6 The associated application is told that the user has completed
all editing on the current form and does not wish to return to it at a later
time. If some fields have not been filled in, the user is warned of their existence
and asked for a confirmation of the command.

0

5 except when an application uses Fabform in impatient mode. All changes will automatically be
saved and Fabform will exit without confirming intentions.

6 except when impatieait mode is in effect

o_

Appendix C

Programmers' Guide to Fabform

84

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 85

Programmer's Guide
to the

Fabform User Interface
Rajeev Jayavant

Revised August 3, 1988

Fabform is a generalized form editor which serves as the user interface for several
utilities in the cafe system. This document describes the basic operation of Fab-
form from the programmer's standpoint, providing the information necessary to use
Fabform as the user interface for a given application. The User's Guide to Fab form
should be consulted for further information. Questions and bug reports should be
sent to cfabformOcaf.mit.edu".

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 86

C.1 Introduction

Fabform is a generalized form editor designed to be used as the user interface for a
variety of programs. It is quite flexible in terms of the types of forms that can be
handled, though the attempt to keep Fabform as generalized as possible imposes a
few limitations. Terminal independence is an important feature of Fabform, though
performance degrades rapidly when running on terminals with fewer capabilities
than a vt52. This document describes the capabilities and deficiencies of the current
implementation of Fabform.

Software updates and bug fixes are made periodically. Every attempt will be made
to keep new releases of Fabform completely compatible with applications designed
around older versions. Please send a bug report if you suspect that a problem is
introduced in a new release that makes it incompatible with previous versions. If
you feel that your application (and hopefully others) could benefit significantly by
an addition of features to Fabform, please send mail to "fabform@caf.mit.edu" and
describe your situation. Perhaps the feature can be added if the modification is
feasible.i,

C.2 Interaction with Fabform

Fabform is designed to run as a separate process and communicates with the asso-
ciated application program via two files: the template file and the parameter file.
The template file describes the layout of the form and the types of data that can be
entered in the various fields. The parameter file specifies the contents of the various
fields defined in the template file. Fabform takes a template and/or parameter file
as input and produces a parameter file as output. Both input and output parameter
files may be read from/written to pipes if desired. The examples directory under
the Fab form source code directory contains some sample application programs that
interact with Fabform.

Once the application program invokes Fabform, it can no longer communicate with
Fabform. All interaction between the two processes is done only through the files
described above, and the input template and parameter files are read only when
Fabform is invoked. The output parameter file, however, can be read at any time,
so the application can keep track of changes to the output file as they happen'.
If the output parameter file is _ctually an output pipe, the process reading the

'The output parameter file is first written as soon as Fabform finishes reading the input parameter
file and is updated whenever the user executes a save command

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 87

information sent down the pipe can monitor data as it is saved by the user.

The format of the output parameter file is identical to that of the input parameter
file (described later). The actual ordering of information within the output pa-
rameter file can vary greatly from that in the input parameter file, thus programs
reading the parameter files should not make any assumptions about the ordering
of information. The only ordering that is guaranteed in the output parameter file,
in addition to the ordering imposed by the restrictions on parameter files, is that
multiple instances of an operation appear in the same order as they appear in the
form being edited. If the output parameter file is actually a pipe, the EOF character
(control-D or '\004') is used to indicate the end of a complete set of data2 .

Whitespace is added to the output parameter file in an attempt to make it more
readable (presumably for debugging purposes). No assumptions should be made
about the existence of whitespace since the specifications of the parameter file for-
mat state that whitespace should be ignored.

The exit status of Fabform determines whether the user has completed all editing
of the form.' Exit status 0 indicates that all editing is complete, status 1 indicates
the user wishes to return to the form at some later time, and a negative status
indicates a fatal error occurred4 .

The template files are intended to be static in the sense that under most circum-
stances they would be created once and used repeatedly. Parameter files, on the
other hand, are normally created dynamically as they are needed and deleted when
they are no longer needed.

2 The output pa-3meter file is updated whenever the user executes a save command. If the output
is to a pipe, there is no way to rewind the file to the beginning, thus the EOF character is used to
indicate the end of a block of data that would normal'y correspond to a complete output parameter
file.

3ie. Does the user want to resume editing the current at some later time or has he/she made all
the modifications that are ever to be made to the form? A form is said to be complete when the
user has entered values in all fields that are required to be filled in, or if the user claims that he has
completed filling in the entire form.

4Fatal errors can be caused by errors in the template or parameter files, by failure to open the
specified files, refusal of the system to grant a memory allocation request, or a fatal error in Fabform
itself.

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 88

C.3 Template File Format

The template file format resembles ITTEXfiles in that all command directives begin
with a "\" and any amount of blankspace is treated as a single space. A \ may be
included in the form by specifying \\ in the template file.

C.3.1 Positioning Commands

\hspace[#chars] insert horizontal blankspace of #chars

\hpos[colun#] move to horizontal position given by column#. First column is
1

\ni begin new line

\vspace[#lines] insert #lines blank lines. \vspace[O] is equivalent to \nl

Any blankspace in the file before or after \hpos or \hspace is ignored. Blankspace
is also ignored if it occurs at the beginning of a line.

C.3.2 Field Definition Commands

Field definitions consist of a field width, a field name6 , and some help information
describing the purpose of the field. Some fields implicitly define the width while
others do not have the help information because users are not allowed to move the
cursor onto those fields. The help information is normally displayed on the last line
of the screen when the user places the cursor on a field. The restriction on field
width is determined at compile time, though the typical maximim field width is
over 2000 characters. Thus there is no problem having fields that span line breaks.

The field declaration describes the type of data that may be entered into a field.
The parameter file may place further restrictions on the type of data that may be
entered.

The field definition commands are:

\global(width][naine] insert global parameter for specified width. A global pa-
rameter is one that can be accessed from within any operation block (see next

8Blankspace is defined as any combination of spaces, tabs, and newlines.
OField names will be also be referred to as tags or parameters in later sections of this document.

. . . . - - -. L • m -II I ill i i ° - i n

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 89

section) but cannot be entered by the user. If the value of a global is not
specified in the parameter file, the field is left blank. There are a few globals
that are defined by Fabform if they are not specified in the parameter file.

user the login name of the user running Fabform

now the time at which Fabform was invoked. The time is in the format
"Ymm/dd/yy hh:mm:ss"

editor-name some default string that is printed on the status line

help-file the file containing a summary of Fabform commands

\integer[width i [name] [help] allow only the digits 0 through 9 with an optional
preceding minus sign

\float [width] [name] [help] allow only valid floating point numbers, including sci-
entific notation

\3tring[widthl namel [helpi allow any arbitrary string of printable characters

\comment [width] [name] [help] just like \string except that the field does not
become read-only after a save. This field type is equivalent to \string*- or
\string-* (see below) and exists only for backward compatibility.

\readonly [width] [name] [help] just like \string but always read-only (but vis-
itable, unlike \hidden)

\lispexp[width] [name] [help] Allow only valid "lisp" expressions. Tests for match-
ing double-quotes and parentheses. The matching open parenthesis is flashed
whenever a close parenthesis is entered.

\hiddentwidthl [name] If the value is not specified in the parameter file, the field
is left blank. The user cannot move the cursor onto a hidden field. Very
similar to a global except that the name lives in the local namespace of the
operation (see next section).

\date name] help] user can enter the current time into the field by pressing
I RETURN]. The date is in the format "mm/dd/yy hh:mm:ss". If the current
time is not desired, the user may enter any valid date and time. Only month
and day need to be specified with the year defaulting to the current year and
hours, minutes, and seconds defaulting to zero.

\day[name][help] Just like \date except that the field does not include the time
of day. The day is in the format "mm:dd:yy". The strange naming of these
two field types is the result of preserving backward compatibility.

\global, \hidden, and \readonly fields are always read-only (and only \readonly is
visitable) whereas \comment fields are always writable. All other field types are
write-once; the fields are writable until the user enters a value and saves the state

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 90

of the form. Appending a "*' to any field type forces the field to remain writeable
after 'a save. Appending a c-" to any field type signifies that filling in the field is
optional, thus the field is considered to be filled when Fabform determines whether
the user has completed filling in the form.

C.3.3 Operation Block Delimiters

All tags other than the globals live in the local namespace of the operation block they
are defined in. Thus it is possible to reuse tag names as long as they occur in different
operation blocks. There may be multiple instances of the same operation block, but
operation blocks may not be nested. Names of tags, globals, and operation blocks
(described below) are case-insensitive.

An operation block must be started before the first non-global field can be defined,
and an operation block must end before the next one can begin.

The block delimiting commands are:

\begin[operation..name] defines the start of a new operation block.

\end[operation-name] defines the end of an operation block. The operation-name
specified must match the name specified in the \begin command.

C.4 Parameter File Format

The parameter files use a lisp-like syntax to delimit different operation instances
that may exist within a single parameter file. The structure of the files is quite
flexible. Whitespace (spaces, tabs, and newlines) is ignored except when it occurs
within double-quotes ("). Since double-quotes are used to delimit strings, they must
be preceded by a \ if they are used within a string. Similarly, a \ is represented as
\\ within a quoted string. Information within a parameter file is case-insensitive
(except for quoted strings) and will be represented in lower-case in the output
parameter file. Additional restrictions are described at the end of this section.

The following three strings are keywords and should be avoided as tag names to
prevent any possible confusion. None of these directives may be nested within each
other.

template specifies a template file to use to extend the current form

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 91

operation defines a block of parameters for an operation instance. Details on
syntax follow. Parameters declared/defined within a particular operation in-
stance remain local to that instance, allowing multiple instances of the same
operation.

deflne-oneof-class define a class of objects that can later be specified using the
defined class name (see oneof-class).

The following directives may be specified only within parameter definitions within
an operation directive. These directives are not guaranteed to work if they are
nested, but they may be used in conjunction with each other as described later in
this section.

default defines a default value for a parameter that does not have a value assigned
to it. The default value does not become the value of the parameter until the
user visits the field and presses I RETURN

initial-value defines an initial value for a parameter and allows the user to modify
it. This differs from simply giving a value to a field in that fields that become
read-only may be given an initial value that can be modified.

private assigns a value but does not allow the user to tell whether the value is 0
really a parameter or something hardwired into the template. Good for hiding
things from users who are better off not knowing the truth.

oneof restrict the parameter to take on one of the specified values

oneof-class like oneof but specifies the name of a class defined via define-oneof-
class rather than a list of choices

exec-function function to execute when the value of the field is changed. Refer
to the Addendum to the Programmer's Guide to Fabform for more details

In addition to the above directives, Fabform supports a class of values called globals
that may be accessed from any part of a template file. Globals are defined at the
start of a parameter file using the syntax:

(global-parameter "value")

Fabform also provides default values for four globals:

user the login id of the user

now the time at which Fabform began execution

S

APPENDIX C. PROGRAMMERS'GUIDE TO FABFORM 92

editor-name the message displayed in the status line. default is set at compile
time at the whim of the programmer.

help-flle the name of the file to display when the user asks for help. Normally this
is a file containing a summary of Fabform commands.

A parameter file may define globals that do not exist anywhere in a template (al-
lowing information to be transferred from the input parameter file to the output
parameter file), but any local field definiti',is (le. within operations) must corre-
spond to fields defined in a template file.

The template directive allows many separate template files to be appended together
to create a single form. Each template directive causes a separate template file to
be appended in the creation of the form. The syntax is:

(template "template-file-spec")

The operation directive takes the form
U

(operation operation-name
<parameter value assignments>

The define-oneof-class directive is useful if many fields are to be restricted to the
same set of values. Rather than specifying the restriction list explicitly within each
parameter description via a oneof declaration (see below), the restriction list can
be defined once using the define-oneof-class using the form

(define-oneof-class class-name choice_1 choice_2 ...)

The defined class can then be referenced via the oneof-class declaration within a
parameLer definition. Class names defined using define-oneof-class live in their own
namespace, but this namespace is common to all operation instances. Thus class
definitions are global to all procedures and a class may not be redefined. A class
name may, however, be the same as that of a global or a tag within an operation.

Parameter values are assigned using one of the following forms:

(parameter-name value)

... , m,0 n nm m m m uam mtun tni lniiiN~lmlU nm nm l -| ... !

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 93

(parameter-name (default value))
(parameter-name (initial-value value))
(parameter-name (private value))
(parameter-name (oneof choice_1 choice_2 ... choice-n))

(parameter-name (oneof-class class-name))

where value may be any arbitrary string. Whitespace will be deleted unless value
is enclosed in double quotes. The double quote character therefore may not be
included as part of any value. All values will be truncated to the field width specified
in the template file, if required. The oneof (or oneof-clas and default directives may
be used in conjunction, e.g.

(parameter-name (default-value)
(oneof choice-1 choice_2 ... choicen))

In the case of fields that do not become read-only after a save, it is even sensible to
specify a value in addition to a oneof declaration, eg.

(parameter-name value
(oneof choice-l choice_2 ... choice-n))

Parameter names may also be specified hierarchically, eg.

(measurements
(right

(value 2378)
(units "A"))

(left
(value 2412)
(units "A")))

Internally the parameter names are treated as "measurement.right.value", "mea-
surement.right. units", "measurement.left.value", and
"measurement.left.units". These expanded names are the ones that must be used
within the template file.

A parameter file consists of any number of global definitions followed by any number
of operation, template, and define-opset-class directives. The only restrictions are
that all global definitions must appear before any template directives, the template

I |

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 94

directive corresponding to an operation directive must occur before the operation
directive, and a define-opet-class directive must occur before the class-name is
referenced in a oneof-clasa declaration. The number of operation and template
directives is largely determined by the capability of the VM system and the patience
of the user for going through long forms.

The format of the parameter can be parsed easily by a Lisp application, but C ap-
plications may find the job more difficult. 1_o ease the burden for C programmers,
a collection of routines for parsing parameter files is provided in the utilities
directory under the Fabform source directory, along with the accompanying docu-
mentation.

C.5 Invoking Fabform

The Fabform command line syntax is as follows:

*/ /usr/cafe/lib/fabform (-p input.parameter.filel
[-o output.parameter-file]
(-d template-directory] [-t templatefile]
C-f outputform-file] (-r] f-v] (-q] f-n]

C-s field-name :op.name:op-instance]
[-H help-file] (-N editor-name]
C-zJ E-ii (-el [-D)

Any or all of the flags may be specified. Either an input parameter file or a template
file must be specified in all cases. The command line flags are interpreted as follows:

-p Use the next argument as the name of the input parameter file. If a template
file is also specified with the -t flag, the template file will be read first.

-o Use the following argument as the output parameter file. The output file may
be the same as the input file without any chance of data loss. The output
file is written whenever the user performs a save operation and is guaranteed
valid unless there is a shortage of disk space or the system crashes during a
write.

If the output filename begins with a "I", pipe the output to that process
instead of writing it to a file. For example,

fabform -p infile -o "Ifoo argl arg2"

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 95

will pipe the information that would be sent to the output parameter file into
the process "foo argl arg2". An EOF character (control-D, or '\004') will be
sent down the pipe to indicate the end of a save operation (since the user may
repeatedly save his data).

-d The next argument will be used as the directory in which to look for template
files. A trailing / will be added if necessary.

-t Use the following argument as the name of the template file to read. If an
parameter file is also specified, the template file will be read first. The -t
option is useful for generating skeleton parameter files from a template file
(eg. "fabform -t templatefile -o outputparamfile -f /dev/null") or for using
different templates with a static parameter file.

-f Use the next argument as the filename to store a printable representation of the
form into. The file can then be printed using Ipr or displayed on the screen
using ul or more. Fabform does not start up interactively and simply exits
after creating the form file.

-n The default movement upon pressing RETURN is changed to vertical instead
of horizontal

-q Do not attempt to report whether all editing is complete. Normally Fabform
will attempt to determine whether all editing is complete on a given form
and return an appropriate exit status, sometimes by querying the user. In
situations in which the notion of completeness does not apply, the -q option
should be used to prevent the user from being unnecessarily harassed. If -q
is specified, ctrl-X ctrl-T behaves like ctrl-X ctrl-C, and the exit status of
Fabform is meaningless if it is non-negative.

-r Read-only mode. Allow the user to browse through the form without changing
anything. No output parameter file is created even if -o is specified.

-H specify the file to print as the help file. Can be overridden by a specification in
the parameter file.

-N specify the text to use for the "editor name". Can be overridden in the param-
eter file.

-z Disable suspension via ctrl-Z or ctrl-X ctrl-Z. Useful if you don't want the user
to suspend the application.

-D Display messages for non-fatal errors in parameter or template files. If any such
errors are detected, Fabform terminates after reading the entire parameter or
template file. If the -D flag is not specified, non-fatal errors are not reported
and operation of continues as usual. The non-fatal errors are:

e Definition of parameters not used in the corresponding template file. The
definition is ignored.

APPENDIX C. PROGRAMMERS' GUIDE TO FABFORM 96

* Specifying an undefined class in a oneof-class declaration. The oneof-
class declaration is ignored, and no additional restrictions are put on
the field.

* Multiply defining a class in define-oneof-class declarations. Only the
first definition is stored.

* A reverse \hpos while reading a template file

-i Use impatient mode. Do not &rify user's intentions for ctrl-X ctrl-C, ctrl-X ctrl-
S, or ctrl-X ctrl-T. A save is automatically performed before an unconditional
exit.

-e Initially position cursor on last editable field in the form instead of the first.

-s Use the next argument to determine where to position the cursor at the start of
the edit session. The cursor will start out on the field named field-name in
the op.instancot' instance of the operation named op-name.

input pipe The input parameter file can be read from an input pipe rather than a
file. The parameter file must be piped into Fabform using a mechanism similar
to the popen(function or the piping mechanism of a shell. The -p option
overrides use of an input pipe to read the input parameter file.

output pipe The output parameter file can be written to an output pipe rather
than a file. The output of Fabform can be piped into another process using
a mechanism similar to the popeno function or the piping mechanism of a
shell. Fabform can use this mechanism to pipe the output parameter file to
an existing process (eg. its parent). The -o option will override the use of an
output pipe7

'An output pipe created using the -o option first creates a new process into which the output
parameter file will be piped. Using an output pipe without the -o option allows communication with
an existing process.

Appendix D

The Procedural Interface to

Fabform

The initial version of Fabform ran as a separate process and only communicated

with an application through files. The application created files representing the

initial state of the form and handed them to Fabform. When Fabform exited, the

application would read the files to determine the final state of the form.

While this type of interaction was adequate for certain applications, e.g. the

machine reservation program, there was a need for a mechanism that allowed finer-

grained interaction between an application and Fabform. Thus a procedural in-

terface to Fabform was created, allowing Fabform to be embedded within an ap-

plication and call functions within the application whenever the user performed

actions of interest to the application. The Addendum to the Programmers' Manual

to Fabform documents this procedural interface.

97

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 98

Addendum to Programmer's Guide
to the

Fabform User Interface
Rajeev Jayavant

Revised July 1, 1988

Fabform is a generalized form editor which serves as the user interface for several
utilities in the cafe system. This document describes how Fabform may be in-
corporated as a subroutine in a user program. Fabform now includes support for
applications written in Lisp as well as in C.

The Programmer's Guide to Fabform contains additional information that is re-
quired in order to use Fabform within an application. The User's Guide to Fab form
should be consulted for further information. Questions and bug reports should be
sent to "fabformQcaf.mit.edu".

So

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 99

D.1 Introduction

One major disadvantage of running Fabform as a separate process in the minimal
interaction between the application and Fabform while the user is editing the form.
By incorporating Fabform into the application itself, it becomes possible to associate
a function I with each field. The function will be called whenever the value of that
particular field changes 2

The called function may modify the behavior of Fabform upon return in any of the
following ways:

* change the value of the current field

e display a message in the status line

* make the current field writable again (if it was made read-only by a save just
prior to calling the function)

* save the output parameter file

o exit Fabform

In addition, the function may perform any actions it wants to, including writing
to the user's terminal or modifying the signals. To avoid confusing Fabform upon
return, mechanisms are provided to instruct Fabform to reset its signals and refresh
the screen.

A final bonus is that Fab form may be called recursively with minimal overhead
since there is no need to start a new process. Of course, if very large forms are
used, there is a chance of running out of memory space.

The only real disadvantage to including Fabform as a subroutine in an application
is that the application must be relinked to incorporate the latest bug fixes and
enhancements made to Fabform. - When Fabform is run as a separate process, the
most recent version is automatically available.

IThe functions may be written in C or Lisp, and all of the functions do not have to be written
in the same language.

2 The function declaration specifies whether to call the function when a new value is "entered"
into the field or to call it as individual characters are entered into the field.

3 A Lisp application may choose to load the Fabform package at runtime, thereby automatically
obtaining all updates.

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 100

D.2 The Fabform Interface

There are two routines which may be executed to start a Fabform edit session,
fabform() and fabforml(). The routines differ only in the format in which the
arguments are specified. Lisp applications must use the macro fabform: exec -
fabform which takes very similar arguments.

int fabform(functiondefs .args)
struct fabform-functions *function.defs;
char *args[];

int fabforml(function-defs.argl.arg2.....argn. (char *)O)
struct fabform-functions *function-defs;
char *argl,*arg2..... *argn;

(fabform:exec-fabform function-definition-list argl ... argn)

U' D.2.1 Function Definitions

The function.def s argument specifies a list of functions, names, and instructions
for running those functions. The function-definition-list in the Lisp macro
performs the same role. The actual assignment of a function to a field in the form is
done via the input parameter file using the exec-function construct. For example,
to attach the function named "twiddle" to a field named "knob", the parameter file
entry would look like:

(knob (exec-function "twiddle"))

Of course, other assignments can simultaneously be made to "knob" (e.g. oneof,
oneof-class, default, private, or even a value). The name given in an exec-f unction
construct must match a name in the function-defs list passed to Fabform, other-
wise no function assignment will be made to the field.

The format of the functiondef s entries is as follows:

struct fabform-functions {
struct fabform-retstat (*function) ();
char *name;

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 101

int action;
}

The fields in the structure have the following meanings:

function a pointer to the function to be executed. The calling interface of these
functions will be discussed later in this document.

name the name that this entry will be referenced by in an exec-function con-
struct in a parameter file

action the actions that will be taken before the function is called. The function
may specify additional actions to be taken upon returning (discussed later).
The actions field should be constructed by ORing (use I) any of the following
values together.

FABFORM-SET-SIGNALS resets SIGINT, SIGQUIT, SIGTSTP, SIG-
BUS, SIGSEGV, and SIGALRM to their original handlers. The signals
will automatically be restored to Fabform's preferred settings upon re-
turn. Any function that wants to take control for an extended period
(e.g. to interact directly with the user or start up another process) should
use this feature. See section on Signal Handling for more details.

FABFORMSAVE save the state of the form into the output parameter
file before calling the function. Allows the function to look at the values
of other fields in the form. Be careful with this one since some fields can
become read-only after a save.

FABFORMEXIT exit Fabform before calling the function. This can be
useful if the function always exits Fabform and has the advantage that
memory allocated by Fabform is released before the function is called.

FABFORM..NOREFRESH do not save the tty state and keep the cur-
sor in the current position. This value should only be included if the
function is not going to affect the screen in any way whatsoever. If FAB-
FORM-NOREFRESH is missing, the tty state is saved and the cursor
is moved to the lower left corner. A screen refresh is performed on return
only if the return status requests one.

FABFORMCLEAR Clear the screen before calling the function. A refresh
will be performed upon return even if one is not requested.

FABFORMWRITABLE keep this field writable even if it is made read-
only by a save

FABFORMREEDIT keep cursor on present field after return

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 102

FABFORMANYKEY call the function any time the user presses a key
that leaves a valid value in the field4 . Normally the function is called only
when the user "enters" a value in a field (e.g. by pressing I RETURN or
moving to another field).

FABFORMEXEC execute function. This one will automatically be set if
it is missing. Kind of useful to have something to assign, though, if none
of the other options are desired.

The final entry in the function-def 9 list must have the name field set to (char
*)0. If no function definitions are to be made, function-defs may be specified as
(struct fabform-functions *)0.

The Lisp function-definition-list is used to express the same information as
function-def a is in C. The function-definition-list is a list of function defi-
nitions of the form:

(function-pointer function-name action)

* The fields of the function definition (which is also a list) are very similar to their C
counterparts.

function-pointer A Lisp integer that may be passed to C as a pointer to an
executable C function. A suitable pointer to a Lisp function is obtained
by using the macros fabform:make-fabform-function or fabform:defun-
fabform-funct ion to define a Lisp function (discussed in the next section).

function-name The name the function will be referenced by in the exec-function
entry of a parameter file.

action A list composed of the following keywords whose actions correspond to
those of their C counterparts.

" :clear
" :set-signals

" :save

" :exit
" :no-refresh

" :writable

4The function is not called when the new value is obtained by deleting characters. This is
currently considered a feature and may not be present in future implementations.

=: - - =m .,.mlm inmmmlilmmmm Ir n ml~l m

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 103

" :reedit

" :any-key

" :exec

" :no-exec

The action list may be nil.

If the first entry in the function-def a list is named "abformzInit", the function
declared in that entry will be called before any editing is begun but after all field
definitions and values have been read from the specified files. The "fabforminit"
function is like any other function associated with a field except that all the pa-
rameters it is called with will be passed in as NULL or 0 when it is called as an
initialization routine.

D.2.2 Fabform Options

The arguments specified in args or argi through argn are equivalent to the com-
mand line options for Fabform. If the fabform() routine is used, the last entry in
args should be (char *)0 to indicate the end of the list.

fabforml() provides a simpler interface to use if the number of arguments is known
at compile time. There is a limit of about 100 arguments for this interface while
the number of entries in args [I for f abform() is unlimited.

All input to Fabform is still in the form of parameter files and template files. Ap-
plications making full use of functions associated with fields, however, may find it
unnecessary to use an output parameter file. Such applications should simply not
specify an output file and save everyone from doing unnecessary work.

D.2.3 Return Value

The value returned by f abform() and fabforml() is identical the exit status re-
turned by a Fabform process, except if a function requests an exit. Briefly, the exit
status can be:

<0 fatal error. an error message describing the problem should be generated

0 user exited form and claims that all entries are filled

I user exited form and wishes to re-edit at a later time

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 104

>1 a function associated with a field requested the exit. The actual return value
is meaningless to an application.

D.3 The Function Interface

The functions associated with fields must be of the form:

struct fabform-retstat
function-to-exec (field-value,field-name ,operationname,

operation_ instance, outputf ile _name)
char *field-value. *fjeld-.name. *operation.name;
int operationinstance;
char *output-file-name;

where the operands have the following meanings:

- • field-value the contents of the field

field-name the name of the field whose contents were changed. Allows the same
function to be associated with many different fields. The field-name will
always be in lower case.

operation-name the name of the operation in which the field is defined s The
operation-name will always be in lower case.

operation-instance indicates which instance of the operation the field is defined
in 6. The first instance of an operation is numbered 1.

output-file-name the name of the output parameter file in case the function is in-
terested in the state of globals, etc. Much more useful if the FABFORMSAVE
attribute is set in the functionlef s entry for the function. The values of
other fields and their restriction lists can be examined and modified via a set
of functions.

The return value of the function specifies the actions that Fab form should take.
The fabform-retstat structure is defined as:

'It is possible to use the same field name in different operations (or \begin[]/\end[) blocks).

"An operation name does not uniquely identify an operation instance; an operation of a given

name can occur any number of times within a form.

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 105

struct fabform-retstat {
char *field.value;
char *message-string;
int action;

}

All of the fields must be assigned using the following guidelines.

field-value The contents of the field can be changed by specifying a pointer to a
character string in the field-value entry of the return value. The specified
string should be in a static location, not in the stack frame of the called
function since this stack frame will be destroyed upon return. To leave the
contents of the field unchanged, assign the field-value entry to (char *)0.

message-string Fabform will display the string that the message-string entry
points to. Once again, the string should be in a static location and not in the
stack frame of the called function. If the message-string entry is assigned
to (char *)0, no special message will be displayed.

action Specifies what actions Fabform should take upon the function's return. If
no special action is to be taken, the action entry should be set to FAB-
FORMNOEXEC. Otherwise it should be set to the logical OR of any of the
following values.

FABFORM._SET SIGNALS restores signals to a state that Fabform prefers
them to be in. This option should be used anytime a function changes
signal handlers, though it is unnecessary if FABFORMSETSIGNALS
was specified in the function-defs entry for the function. When in
doubt, specify FABFORM.SETSIGNALS.

FABFORM-SAVE save the state c: the form into the output parameter
file. Can be handy if used in conjunction with FABFORMEXIT. Be
careful with this one since some fields can become read-only after a save.

FABFORM-EXIT exit Fabform. Allows quick exits without having to en-
ter ctrl-X ctrl-C all the time.

FABFORM.NO -REFRESH do not refresh the screen upon return. Nor-
mally the screen is refreshed to ensure integrity of the display, but any
function that can guarantee no output to the terminal may set this value
to avoid unnecessary refreshes.

FABFORM_.WRITABLE keep this field writable even if it is made read-
only by a save

FABFORM.REEDIT keep cursor on present field after return

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 106

D.3.1 The Lisp Function Interface

Lisp functions associated with fields must be of the form

(defun function-to-exec (field-value field-name
operation-name operation-instance
output-file-name)

...)

(fabform: return-values new-field-value
message-string action))

The parameters are identical to their C counterparts. Since there is a problem in re-
turning values directly from Lisp to C, the Lisp function must call fabform: return-
values to return values to Fabform.' The new-field-value and/or message-
string arguments should be nil if the field value and/or message string are not
to be modified upon return. The action field should be a (possibly null) list of
keywords from the following set (:set-signals, :save, :exit, :no-refresh, :writable,

i *i :reedit, :any-key).

The Lisp function can be made callable by Fabform by using value returned by

(fabform:make-fabform-function function-to-call)

in the function definition list passed to fabf orm: exec-fabform. Since fabform:make-
fabform-function creates a new function and registers it in a table of C-callable
functions, it should not be called repeatedly for the same Lisp function to avoid
overflowing the table.

Alterntely, the macro defun-fabform-function can be used. It uses the same
format as defun but returns a value that may be used in a function definition list
passed to fabform: exec-fabform-function.

D.4 Signal Handling

Fabform uses its own signal handlers for SIGINT, SIGQUIT, SIGTSTP, SIGALRM,
SIGBUS, and SIGSEGV. The SIGTSTP, SIGBUS, and SIGSEGV handlers invoke

7 The real return value of the Lisp function should be the value returned by the call to
fabform: return-values.

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 107

the original handlers after doing their thing.

Whenever Fabform sets these signal handlers, it first checks to see whether the
presently assigned handler is different from what it wants to use. If the old handler
is different, it is saved for later use when Fabform resets signals.

Functions associated with fields may modify signal handlers under two conditions:

1. The FABFORMSET_-SIGNALS bit is set in the action field of the returned
value. This will tell Fabform to reinstall its own signal handlers.

2. The function must be aware that any signal handler that it changes becomes
the new saved handler which will be reinstalled whenever Fabform resets the
signal handlers.

Fabform will reset signal handlers (ie. reinstall the saved handlers) upon a normal
exit. Any functions which do a recursive call to Fabform should be sure to set
the FABFORM.SET-SIGNALS bit in the action field of the return value'. Upon
abnormal exit from Fabform, everything is restored to the state that existed when
that invocation of Fabform was begun.

D.5 Utility Routines

The following routines may be called from functions associated with fields. They
allow simple methods by which data or routines internal to Fabform may be accessed
while retaining the safety of a level of abstraction.

char fb-display-message (message)
char *message;

(f abform:display-message message)

Display the message in the status line on the last line of the screen. An older
interface, fb-display-message-prompt 0 is also available to C routines that leaves

'The saved signal handlers will be reinstalled by the recursively-called Fabform when it exits.
Since there is only one set of saved handlers for all inocations of Fabform, very bad things will happen
if Fabform is not told to install its preferred set of handlers. The FABFORMSETSIGNALS bit
should be set whenever there is any doubt whether Fabform's preferred set of handlers is installed.
The worst thing that can happen by setting the bit is having do a little unnecessary computation.

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 108

the cursor at the end of the message being displayed rather than returning the
cursor back to the field it was on.

char fbqueryyes.no (prompt)
char *prompt;

(fabform:query-yos-no prompt)

Display the prompt on the last line of the screen and wait for the user to press "y",
"Y", "n", "N", or control-G. Returns either 'y', 'n', or '\007' (or the equivalent
characters in Lisp).

char fbquery.single.keystroke(prompt.validchars)
char *prompt.*validchars;

(fabform:query-single-keystroke prompt validchars)
0*

Display the prompt on the last line of the screen and wait for the user to press a
single keystroke. If validchars is non-NULL, wait until user presses a keystroke
that is in validchars.

The Lisp version returns a character object. nil may be specified for validchars.

int fb-querystringvalue(prompt. string.allow-spaces)
char *prompt,*string;
int allow-spaces;

(fabform:query-string-value prompt allow-spaces)

Displays the specified prompt on the last line of the screen and allows the user to
enter characters as long as space permits on the bottom line. If allow-spaces is
non-zero, the user may enter spaces, otherwise, they are ignored. The user's input
is returned in string, and the return value is the length of the input. A -1 is
returned if the user pressed control-G.

The Lisp version returns the string entered by the user or nil if control-G was
pressed. allow-spaces should be specified as nil if spaces are not to be allowed.

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 109

char * fb-get-field-value(field-name, opnameopinstance)
char *field-name *op-name;
int opinstance;

(fabform:get-field-value field-name op-name op-instance)

Return the value of the field named field-name within the op-instance' occu-
rance of operation op.name. Returns NULL if the field could not be found.

int fb-set-field-value (field-nameop.nameop.instance,
field-value ,refresh)

char *field-name. *op.name, *field-value;
int op.instance.refresh;

(fabform:set-field-value field-name op-name op-instance
field-value refresh)

Sets the value of the field specified by field.name, opname, and op.instance to
field-value. No validation is done on the value, though truncation is performed if
necessary. Read-only and hidden fields can be modified using fb.set-field-value) 0
if desired. If ref resh is non-zero, the new value will immediately be displayed on-
screen, otherwise it will be updated whenever the screen is refreshed. The return
value will be 0 if successful, -1 if the specified operation instance could not be found,
and -2 if the field could not be found.

char ** fb.get.field-restrictions(fieldname.opname. op.instance)

(fabform:get-field-restrictions field-name op-name op-instance)

Returns the list of resiricted values associated with a field. Returns (char *) 0 if
the field could not be found or if there are no restrictions on the field. Each entry
in the list is a pointer to a possible value for the field. The last entry in the list is
NULL.

The restriction list returned in the current implementation is in fact the list used
internally by Fabform, thus any changes to that list will affect the validation of
entries for the field. In addition, different fields may share a restriction list (eg. via
oneof-class declarations), thus changing a list may affect more than one field.

The Lisp implementation returns a list of strings corresponding to the restrictions.
There is no sharing of data in the Lisp implementation, thus the returned list and
its contents may be mutated without consequences.

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 110

int fb.set-fieldrestrictions(fieldname.op.name .op-instance.
restrictions ,free.storage)

char *field-name, *op-name, **restrictions;
int op.instance.freestorage;

(fabform:set-field-restrictions field-name op-name op-instance
restrictions)

All parameters (and the return value) have the same properties as their counterparts
in fb-set-field-value 0. The restriction list specified by restrictions should
be a list of pointers to C-style strings of possible values for the field and should be
terminated by NULL. free.storage should be set if the restriction list and all of
its entries were allocated via malloco and should be freeOd when the restriction
list is no longer needed by this field (ie. when a new restriction list is specified or
when this instantiation of Fabform exits).

The Lisp implementation takes a list of strings as the restrictions. The entries
in the list are copied into newly allocated storage before being installed as the
restriction list for the field and will be freed when they are no longer needed.

int fb-set-field-comment (field.name .opname,op-instance,comment)
char *fieldname,*opname,*comment;
int op.instance;

(fabform:set-field-comment field-name op-name op-instance
comment)

Sets the comment printed when the cursor is on a given field. The return value will
be 0 if successful, -1 if the specified operation instance could not be found, and -2
if the field could not be found.

int fb-place-cursor-on-field(field-name ,op-name ,op-instance.
refresh)

char *field-name,*op-name;
int op.instancerefresh;

(fabform:place-cursor-on-field field-name op-name
op-instance refresh)

Moves the cursor to the specified field. If refresh is non-zero (or non-nil), the screen
is updated. Returns 0 if successful, -1 if the operation instance could not be found,
-2 if the field could not be found.

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 111

int fb..delete-region(staropname, startop-instance. endop.name,
end-op.instance, refresh)

char *star-op-name. *end.op.name;
int staropinstance .endop.instance ,refresh:

(fabform:delete-region start-op-name start-op-instance end-op-name
end-op-instance refresh)

Delete the region of the form beginning with start.op until the end of end-op.
If the cursor is on a field that is deleted by the operation, it will be moved to a
new field if possible. The region must begin at the start of a template file and the
portion of the form following the end of the region must also begin at the start of
a template file. If refresh is non-zero (or non-nil), the screen is updated. Returns
0 if successful, -1 if the start operation instance could not be found, -2 if the end
operation instance could not be found, and -3 if a bad region is specified.

int fb-insertregion-before(op-name ,op_ instance ,paramfile,
templatedir, refresh)

char *op.name, *param-file. *templatedir;
int start.opinstance, refresh;

(fabform:insert-region-before op-name op-instance param-file
template-dir refresh)

Inserts the region defined by param-file into the form just before the specified
operation instance. The operation instance must begin at the start of a template file.
template-dir specifies where to look for template files referenced in paramfile.
Use of globals or oneof-class defnitions in the specified parameter file will not affect
fields already existing in the file, thus their use is discouraged. If refresh is non-
zero (or non-nil), the screen is updated. Returns 0 if successful, -1 if the operation
instance could not be found, -3 if a bad region is specified, and -4 if the parameter
file could not be opened. Very bad things can happen if an error occurs while
reading the parameter file - usually resulting in the program exitting with an error
message.

int fb-insertregionafter(op.name,opinstance ,paramf ile.
templatedir .refresh)

char *op-name,*param_f ile,*templatee_dir;
int star-opinstance.refresh;

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 112

(f abfokm: insert-region-after op-name op-instance param-file
template-dir refresh)

Just like fbinsert-region.before except that the region is inserted just after the
speficied operation instance. A bad region error will result if the operation following
the specified operation instance does not begin at the start of a template file.

int fbset.ctrlxkeymap(keyfunction, startaction)
char key;

struct fabform-retstat (*function) ();
int start-action;

(fabform:set-ctrlx-keymap key function-handle start-action)

Bind the keystroke control-X key to the specified function. key may be any char-
acter in the 128 character standard ASCII set. function should be a pointer to
a function of the form normally attached to a field (i.e. the same interface for
receiving and returning values). start-action is identical to the field that wouldahave been specified as a part of the function definition list passed to Fabform upon
startup.

In the Lisp interface, function-handle should be an object returned by fabform :make-
fabform-function or fabform:defun-fabform-function. Similarly, start- action
should be a (possibly null) list of keywords specifying which actions to take before
executing the function.

A key binding may be deleted by either defining a new binding or specifying a NULL
for function (or nil for function-handle). The application-defined key bindings
take precedence over any bindings that Fabform uses, thus applications should be
careful about how they use bindings. Also, upper and lower case characters are
treated differently.

The key bindings are unique to each invocation of Fabform. The keymap is reset
to it's default state (i.e. no application-defined bindings) when Fabform is invoked.
Currently the only method of binding keys immediately after Fabform is invoked

is to specify a function named "fabform-init" in the function definition list given
to Fab form upon startup. This init function should then set up the keymaps as
desired.

int fb-set-esc-keymap(key.function, startaction)

char key;

APPENDIX D. THE PROCED URAL INTERFACE TO FABFORM 113

struct fabforu..retstat (*function)();
int start..action;

(f abform: set-esc-keymap key function-handle start-action)

Just like fb..set-.ctrlx-keyiiap (f abf orm: set-ctrlx-keymap) but binds keystrokes
of the form FESC key instead.

int fb...get-.movement...repat-.countoC

(fabtorm: get-movement-repeat-count)

Returns the value of the movement repeat count entered using control-U. Useful for
functions that are bound to keystrokes which move the cursor via f b..place-.cursor-.on-f ield,
for example.

struct fabform-.retstat fb-.exec..fabform..function(funcdef ,field.value .fiel&..name.
op..name .op..inst .filenam)

struct fabform..functions funcdef;
char *field-value ,*f ield-.name ,*op-name .*filenam;

int op..inst;

Executes a function of the type that is attached to a field and returns the cor-
rect value even if the function is coded in Lisp (The action field should have the
FABFORM..LISP-CALL bit set if a Lisp function is to be called).

There is currently no Lisp implementation of exec-fabf orm.f unction.

D.6 Linking the Fab form Subroutine

The structures and values necessary for defining functions are in the include file
"/usr/cafe/include/fabform.h". To create the executable file for an application
using Fab orm as a subroutine, simply specify "/usr /cafe/ lib /fabform.a" in the list
of files to link in. All of the necessary library functions have already been linked
into the fabform.a file.

The Lisp implementation lives in a package called "fabform" in "/ usr/ cafe/ lib /fabform. fast"
or £/usr/cafe lib/fabform. lisp". Lisp applications written under Franz Extended
Common Lisp should probably have something like

APPENDIX D. THE PROCEDURAL INTERFACE TO FABFORM 114

(require 'fabform "/usr/cafe/lib/fabform.fas1")

at the start of the application. Remember to specify the .fasl or .lisp suffix or the
wrong file will be loaded.

Support has also been added for applications using Kyoto Common Lisp. These
applications should load the file "/usr/cafe/lib/fabform.lsp". Applications that
may run under either Franz or KCL should load the .lsp file. Do not, under any
circumstances, attempt to directly load "/usr/cafe/lib/fabform.o" under KCL. In
addition, the KCL implementation requires the presence of "kcl-ffsupport.o" in
/usr/cafe/lib. If you are not running in the cafe environment, you will need to
obtain this file and install it in an appropriate location.

There are a few precautions that should be taken by applications that link with the

Fabform routines. Any global symbols of function names beginning with "fb_" or

"screenio are reserved for use by Fabform. If the application attempts to use any

globals in this namespace, disasters are likely to happen. In addition, Fabform uses

SiJ parts of the curses and termcap libraries, thus applications should be wary of any

routines or globals used by those libraries.

Bibliography

[Caplinger85j Caplinger, Michael, "Structured Editor Support for Modularity and

Data Abstraction", ACM SIGPLAN Notices, Volume 20, Number 7 (July

1985), pages 140-147.

[Fischer84] Fischer, C.N., Pal, Anil, and Stock, Daniel, "The POE Language-Based

Editor Project", ACM SIGPLAN Notices, Volume 19, Number 5 (May 1984),

pages 21-29.

[Garlan84] Garlan, David B. and Miller, Phillip L., "GNOME: An Introductory

Programming Environment Based on a Family of Structure Editors", ACM

SIGPLAN Notices, Volume 19, Number 5 (May 1984), pages 65-72.

[Horgan84] Horgan, J.R. and Moore, D.J., "Techniques for Improving Language-

Based Editors", ACM SIGPLAN Notices, Volume 19, Number 5 (May 1984),

pages 7-14.

[Horwitz85] Horwitz, Susan and Teitelbaum, Tim, "Relations and Attributes: A

Symbiotic Basis for Editing Environments", A CM SIGPLAN Notices, Volume

20, Number 7 (July 1985), pages 93-106;

[Lederman8l] Lederman, Abraham, "A Pascal Structure-Oriented Editor: Design

and Implementation Issues", M.I.T. Master's Thesis, 1981.

[Reiss84] Reiss, Steven P., "Graphical Program Development with PECAN Pro-

gram Development Systems", ACM SIGPLAN Notices, Volume 19, Number

115

BIBLIOGRAPHY 116

5 (May 1984), pages 30-41.

[Rubin83] Rubin, Lisa F., "Syntax-Directed Pretty Printing - A First Step Towards

a Syntax-Directed Editor", IEEE Transactions on Software Engineering, Vol-

ume SE-9, Number 2 (March 1983), pages 119-127.

[Sedayao881 Sedayao, Jeff, "SEPS: A Structured Editor for Process Specification",

presented at the CIM-IC Workshop at Stanford University, August 4-5, 1988.

[Teitelbaum8ll Teitelbaum, Tim and Reps, Thomas, "The Cornell Program Syn-

thesizer: A Syntax-Directed Programming Environment", Communications of

the ACM, Volume 24, Number 9 (September 1981), pages 563-573.

[Teitelbaum84j Teitelbaum, Tim and Reps, Thomas, "The Synthesizer Generator",

ACM SIGPLAN Notices, Volume 19, Number 5 (May 1984), pages 42-48.a.
iZelkowitz84] Zelkowitz, Marvin V., "A Small Contribution to Editing with a Syn-

tax Directed Editor", ACM SIGPLAN Notices, Volume 19, Number 5 (May

1984), pages 1-6.

